Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 22034-22044, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39106126

RESUMO

Ever since the ground-breaking isolation of graphene, numerous two-dimensional (2D) materials have emerged with 2D metal dihalides gaining significant attention due to their intriguing electrical and magnetic properties. In this study, we introduce an innovative approach via anhydrous solvent-induced recrystallization of bulk powders to obtain crystals of metal dihalides (MX2, with M = Cu, Ni, Co and X = Br, Cl, I), which can be exfoliated to 2D flakes. We demonstrate the effectiveness of our method using CuBr2 as an example, which forms large layered crystals. We investigate the structural properties of both the bulk and 2D CuBr2 using X-ray diffraction, along with Raman scattering and optical spectroscopy, revealing its quasi-1D chain structure, which translates to distinct emission and scattering characteristics. Furthermore, microultraviolet photoemission spectroscopy and electronic transport reveal the electronic properties of CuBr2 flakes, including their valence band structure. We extend our methodology to other metal halides and assess the stability of the metal halide flakes in controlled environments. We show that optical contrast can be used to characterize the flake thicknesses for these materials. Our findings demonstrate the versatility and potential applications of the proposed methodology for preparing and studying 2D metal halide flakes.

2.
Opt Express ; 32(10): 17922-17931, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38858960

RESUMO

Miniaturization of optical devices is a modern trend essential for optoelectronics, optical sensing, optical computing and other branches of science and technology. To satisfy this trend, optical materials with a small footprint are required. Here we show that extremely thin, flat, nanostructured gold films made of highly oriented single-crystalline gold quantum-dots can provide elements of topological photonics in visible light and be used as high-index dielectric materials in the infrared part of the spectra. We measure and theoretically confirm the presence of topological darkness and associated phase singularities in studied gold films of thickness of below 10 nm placed on MgO substrates in the red part of the spectrum. At telecom wavelengths, the fabricated gold metasurface behaves as a dielectric with the refractive index of n≈2.75 and the absorption coefficient of k≈0.005.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA