Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Energy Lett ; 7(10): 3302-3310, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277131

RESUMO

The mixed ionic-electronic nature of lead halide perovskites makes their performance in solar cells complex in nature. Ion migration is often associated with negative impacts-such as hysteresis or device degradation-leading to significant efforts to suppress ionic movement in perovskite solar cells. In this work, we demonstrate that ion trapping at the perovskite/electron transport layer interface induces band bending, thus increasing the built-in potential and open-circuit voltage of the device. Quantum chemical calculations reveal that iodine interstitials are stabilized at that interface, effectively trapping them at a remarkably high density of ∼1021 cm-3 which causes the band bending. Despite the presence of this high density of ionic defects, the electronic structure calculations show no sub-band-gap states (electronic traps) are formed due to a pronounced perovskite lattice reorganization. Our work demonstrates that ionic traps can have a positive impact on device performance of perovskite solar cells.

2.
Adv Mater ; 33(7): e2003137, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33382153

RESUMO

Controlling the morphology of metal halide perovskite layers during processing is critical for the manufacturing of optoelectronics. Here, a strategy to control the microstructure of solution-processed layered Ruddlesden-Popper-phase perovskite films based on phenethylammonium lead bromide ((PEA)2 PbBr4 ) is reported. The method relies on the addition of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8 -BTBT) into the perovskite formulation, where it facilitates the formation of large, near-single-crystalline-quality platelet-like (PEA)2 PbBr4 domains overlaid by a ≈5-nm-thin C8 -BTBT layer. Transistors with (PEA)2 PbBr4 /C8 -BTBT channels exhibit an unexpectedly large hysteresis window between forward and return bias sweeps. Material and device analysis combined with theoretical calculations suggest that the C8 -BTBT-rich phase acts as the hole-transporting channel, while the quantum wells in (PEA)2 PbBr4 act as the charge storage element where carriers from the channel are injected, stored, or extracted via tunneling. When tested as a non-volatile memory, the devices exhibit a record memory window (>180 V), a high erase/write channel current ratio (104 ), good data retention, and high endurance (>104 cycles). The results here highlight a new memory device concept for application in large-area electronics, while the growth technique can potentially be exploited for the development of other optoelectronic devices including solar cells, photodetectors, and light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA