RESUMO
OBJECTIVES: Methotrexate (MTX) is one of the most commonly used medications to treat rheumatoid arthritis (RA). However, the effect of MTX treatment on cellular immune responses remains incompletely understood. This raises concerns about the vulnerability of these patients to emerging infections and following vaccination. METHODS: In the current study, we investigated the impact of MTX treatment in patients with immune-mediated inflammatory disease on B and CD4 T cell SARS-CoV-2 vaccination responses. Eighteen patients with RA and two patients with psoriatic arthritis on MTX monotherapy were included, as well as 10 patients with RA without immunosuppressive treatment, and 29 healthy controls. CD4 T and B cell responses were analysed 7 days and 3-6 months after two SARS-CoV-2 messenger RNA vaccinations. High-dimensional flow cytometry analysis was used to analyse fresh whole blood, an activation-induced marker assay to measure antigen-specific CD4 T cells, and spike probes to study antigen-specific B cells. RESULTS: Seven days following two SARS-CoV-2 vaccinations, total B and T cell counts were similar between MTX-treated patients and controls. In addition, spike-specific B cell frequencies were unaffected. Remarkably, the frequency of antigen-specific CD4 T cells was reduced in patients using MTX and correlated strongly with anti-RBD IgG antibodies. These results suggest that decreased CD4 T cell activity may result in slower vaccination antibody responses in MTX-treated patients. CONCLUSION: Taken together, MTX treatment reduces vaccine-induced CD4 T cell activation, which correlates with lower antibody responses. TRIAL REGISTRATION NUMBER: NL8900.
Assuntos
Artrite Reumatoide , Linfócitos B , Linfócitos T CD4-Positivos , Vacinas contra COVID-19 , COVID-19 , Metotrexato , SARS-CoV-2 , Humanos , Metotrexato/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Masculino , Pessoa de Meia-Idade , Feminino , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Idoso , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Adulto , Linfócitos B/imunologia , Linfócitos B/efeitos dos fármacos , Antirreumáticos/uso terapêutico , VacinaçãoRESUMO
BACKGROUND: Messenger RNA (mRNA) vaccines provide robust protection against SARS-CoV-2 in healthy individuals. However, immunity after vaccination of patients with multiple sclerosis (MS) treated with ocrelizumab (OCR), a B cell-depleting anti-CD20 monoclonal antibody, is not yet fully understood. METHODS: In this study, deep immune profiling techniques were employed to investigate the immune response induced by SARS-CoV-2 mRNA vaccines in untreated patients with MS (n=21), OCR-treated patients with MS (n=57) and healthy individuals (n=30). RESULTS: Among OCR-treated patients with MS, 63% did not produce detectable levels of antibodies (non-seroconverted), and those who did have lower spike receptor-binding domain-specific IgG responses compared with healthy individuals and untreated patients with MS. Before vaccination, no discernible immunological differences were observed between non-seroconverted and seroconverted OCR-treated patients with MS. However, non-seroconverted patients received overall more OCR infusions, had shorter intervals since their last OCR infusion and displayed higher OCR serum concentrations at the time of their initial vaccination. Following two vaccinations, non-seroconverted patients displayed smaller B cell compartments but instead exhibited more robust activation of general CD4+ and CD8+ T cell compartments, as indicated by upregulation of CD38 and HLA-DR surface expression, when compared with seroconverted patients. CONCLUSION: These findings highlight the importance of optimising treatment regimens when scheduling SARS-CoV-2 vaccination for OCR-treated patients with MS to maximise their humoral and cellular immune responses. This study provides valuable insights for optimising vaccination strategies in OCR-treated patients with MS, including the identification of CD38 and HLA-DR as potential markers to explore vaccine efficacy in non-seroconverting OCR-treated patients with MS.
Assuntos
ADP-Ribosil Ciclase 1 , Anticorpos Monoclonais Humanizados , Vacinas contra COVID-19 , COVID-19 , Antígenos HLA-DR , Esclerose Múltipla , Humanos , Feminino , Masculino , ADP-Ribosil Ciclase 1/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/tratamento farmacológico , Vacinas contra COVID-19/uso terapêutico , Vacinas contra COVID-19/imunologia , Antígenos HLA-DR/imunologia , Adulto , Pessoa de Meia-Idade , COVID-19/prevenção & controle , COVID-19/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , SARS-CoV-2/imunologia , Ativação Linfocitária , Anticorpos Antivirais/sangue , Vacinas de mRNA/uso terapêutico , Antígenos CD20/imunologia , Vacinação , Linfócitos T CD4-Positivos/imunologia , Glicoproteínas de MembranaRESUMO
Background: Patients affected by different types of autoimmune diseases, including common conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), are often treated with immunosuppressants to suppress disease activity. It is not fully understood how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific humoral and cellular immunity induced by infection and/or upon vaccination is affected by immunosuppressants. Methods: The dynamics of cellular immune reactivation upon vaccination of SARS-CoV-2 experienced MS patients treated with the humanized anti-CD20 monoclonal antibody ocrelizumab (OCR) and RA patients treated with methotrexate (MTX) monotherapy were analyzed at great depth via high-dimensional flow cytometry of whole blood samples upon vaccination with the SARS-CoV-2 mRNA-1273 (Moderna) vaccine. Longitudinal B and T cell immune responses were compared to SARS-CoV-2 experienced healthy controls (HCs) before and 7 days after the first and second vaccination. Results: OCR-treated MS patients exhibit a preserved recall response of CD8+ T central memory cells following first vaccination compared to HCs and a similar CD4+ circulating T follicular helper 1 and T helper 1 dynamics, whereas humoral and B cell responses were strongly impaired resulting in absence of SARS-CoV-2-specific humoral immunity. MTX treatment significantly delayed antibody levels and B reactivation following the first vaccination, including sustained inhibition of overall reactivation marker dynamics of the responding CD4+ and CD8+ T cells. Conclusions: Together, these findings indicate that SARS-CoV-2 experienced MS-OCR patients may still benefit from vaccination by inducing a broad CD8+ T cell response which has been associated with milder disease outcome. The delayed vaccine-induced IgG kinetics in RA-MTX patients indicate an increased risk after the first vaccination, which might require additional shielding or alternative strategies such as treatment interruptions in vulnerable patients. Funding: This research project was supported by ZonMw (The Netherlands Organization for Health Research and Development, #10430072010007), the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement (#792532 and #860003), the European Commission (SUPPORT-E, #101015756) and by PPOC (#20_21 L2506), the NHMRC Leadership Investigator Grant (#1173871).