Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473736

RESUMO

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Assuntos
Compostos de Ferro , Temperatura , Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Minerais
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762603

RESUMO

The present study investigates the relationship between the local structure, photocatalytic ability, and cathode performances in sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) using Ni-substituted goethite nanoparticles (NixFe1-xOOH NPs) with a range of 'x' values from 0 to 0.5. The structural characterization was performed applying various techniques, including X-ray diffractometry (XRD); thermogravimetry differential thermal analysis (TG-DTA); Fourier transform infrared spectroscopy (FT-IR); X-ray absorption spectroscopy (XANES/EXAFS), both measured at room temperature (RT); 57Fe Mössbauer spectroscopy recorded at RT and low temperatures (LT) from 20 K to 300 K; Brunauer-Emmett-Teller surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). In addition, the electrical properties of NixFe1-xOOH NPs were evaluated by solid-state impedance spectroscopy (SS-IS). XRD showed the presence of goethite as the only crystalline phase in prepared samples with x ≤ 0.20, and goethite and α-Ni(OH)2 in the samples with x > 0.20. The sample with x = 0.10 (Ni10) showed the highest photo-Fenton ability with a first-order rate constant value (k) of 15.8 × 10-3 min-1. The 57Fe Mössbauer spectrum of Ni0, measured at RT, displayed a sextet corresponding to goethite, with an isomer shift (δ) of 0.36 mm s-1 and a hyperfine magnetic distribution (Bhf) of 32.95 T. Moreover, the DC conductivity decreased from 5.52 × 10-10 to 5.30 × 10-12 (Ω cm)-1 with 'x' increasing from 0.10 to 0.50. Ni20 showed the highest initial discharge capacity of 223 mAh g-1, attributed to its largest specific surface area of 174.0 m2 g-1. In conclusion, NixFe1-xOOH NPs can be effectively utilized as visible-light-activated catalysts and active cathode materials in secondary batteries.


Assuntos
Minerais , Nanopartículas , Espectroscopia de Infravermelho com Transformada de Fourier , Eletrodos
4.
Anal Bioanal Chem ; 415(18): 4445-4458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36884077

RESUMO

In this work, we investigated the morphological and electrochemical properties of gallium/bismuth mixed oxide. The bismuth concentration was varied from 0 to 100%. The correct ratio was determined with inductively coupled plasma-optical emission spectroscopy (ICP-OES), while surface characteristics were determined using scanning electron microscopy (SEM) and X-ray diffraction (XRD) measurement. Electrochemical characteristics were studied using electrochemical impedance spectroscopy (EIS) in the Fe2+/3+ couple. The obtained materials were tested for adrenaline detection. After square wave voltammetry (SWV) optimization, the best electrode showed a wide linear working range from 7 to 100 µM at pH 6 of the Britton-Robinson buffer solution (BRBS) supporting electrolyte. The limit of detection (LOD) for the proposed method was calculated as 1.9 µM, with a limit of quantification (LOQ) of 5.8 µM. The excellent selectivity of the proposed method, with good repeatability and reproducibility, strongly suggests the possible application of the procedure for the determination of adrenaline in artificially prepared real samples. The practical applicability with good recovery values indicates that the morphology of the materials is closely connected with other parameters, which further suggests that the developed approach can offer a low-cost, rapid, selective, and sensitive method for adrenaline monitoring.


Assuntos
Bismuto , Gálio , Bismuto/química , Epinefrina , Reprodutibilidade dos Testes , Eletrodos , Técnicas Eletroquímicas/métodos
5.
Materials (Basel) ; 16(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36676443

RESUMO

There is an increasing need to develop new polymer composites with improved properties compared to conventional pure polymer materials. This work aims to develop composites of low-density polyethylene (LDPE) and iron oxide hematite particles. For this purpose, different types of hematite particles with well-defined shapes and narrow size distributions were synthesized: HC2 sample with pseudocubic hematite particles of an average diameter of 1020 nm, HE1 sample with ellipsoidal hematite particles of an average diameter of 533 nm, and HS1 sample with spherical hematite particles of an average diameter of 168 nm. The mass fractions of hematite in the composites were 0.25%, 0.5%, and 1%. Prepared LDPE/hematite composites were characterized by thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and diffuse reflectance ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The mechanical and barrier properties were also studied. The obtained results showed that all prepared composites have improved properties compared to the pure LDPE, especially the composites with pseudocubic hematite particles of well-defined shapes. The results of this study indicate that LDPE/hematite composites can be promising materials for a wide range of applications, especially as packaging materials where improved thermal and mechanical properties as well as resistance to ultraviolet (UV) irradiation are required.

6.
Biosensors (Basel) ; 12(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36354441

RESUMO

Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron-tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton-Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.


Assuntos
Carbono , Técnicas Eletroquímicas , Humanos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Ferro , Derivados da Morfina
7.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35009839

RESUMO

The solid-state ion-selective electrodes presented here are based on the FePO4:Ag2S:polytetrafluoroethylene (PTFE) = 1:1:2 with an addition of (0.25-1)% microwave-synthesized hematite (α-Fe2O3), magnetite (Fe3O4), boehmite [γ-AlO(OH)], and alumina (Al2O3) nanoparticles (NPs) in order to establish ideal membrane composition for iron(III) cations determination. Synthesized NPs are characterized with Fourier-Transform Infrared (FTIR) spectroscopy, Powder X-Ray Diffraction (PXRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). The iron oxides NPs, more specifically, magnetite and hematite, showed a more positive effect on the sensing properties than boehmite and alumina NPs. The hematite NPs had the most significant effect on the linear range for the determination of ferric cations. The membrane containing 0.25% hematite NPs showed a slope of -19.75 mV per decade in the linear range from 1.2∙10-6 to 10-2 mol L-1, with a correlation factor of 0.9925. The recoveries for the determination of ferric cations in standard solutions were 99.4, 106.7, 93.6, and 101.1% for different concentrations.

8.
Chem Commun (Camb) ; 49(81): 9245-7, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24005819

RESUMO

High-energy ball-milling in an oxidative atmosphere caused gradual transition of pure zincite into zinc ferrite due to the oxidation of steel contamination. The rate of contamination increased dramatically (>3×) in an inert atmosphere due to the abrasion of milling tools by the steel chips coming from it.


Assuntos
Aço/química , Atmosfera , Compostos Férricos/química , Oxirredução , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA