Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
PDA J Pharm Sci Technol ; 78(2): 206-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609149

RESUMO

The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.


Assuntos
Contaminação de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cricetinae , Células CHO , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Tecnologia
2.
PDA J Pharm Sci Technol ; 78(2): 144-146, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609150

RESUMO

At the time of the 2023 Viral Clearance Symposium in Vienna, the ongoing revision of ICH Guideline Q5A(R1) Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin clearly was the dominant regulatory topic. At the symposium, the changes expected for Q5A(R2) to mirror advances of scientific knowledge, for example, the inclusion of new products, including viral-vector-derived ones, that can be subject to virus clearance, deliberations around continuous manufacturing processes, the use of prior knowledge to supplement or in part replace virus validation studies, and new molecular methods for detection of adventitious viruses, were discussed by a European and a US regulator as well as representatives from industry associations that had been involved with the drafting process.


Assuntos
Biotecnologia , Comércio , Animais , Humanos , Linhagem Celular , Indústrias , Cinética
3.
J Infect Dis ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592952

RESUMO

The association between granulomas and vaccine-derived rubella virus (VDRV) in people with primary immune deficiencies (PID) has raised concerns about the ability of immunoglobulin (IG) preparations to neutralize VDRVs. We investigated the capacity of IG to neutralize rubella vaccine virus and four VDRV strains. As expected, the rubella vaccine virus itself was potently neutralized by IG preparations; however, the VDRV isolates from patients after intra-host evolution, 2-6 times less so. Diagnosis of immune deficiencies before possible live-virus vaccination is thus of critical importance, while IG replacement therapy can be expected to provide protection from rubella virus infection.


The occurrence of granulomas associated with vaccine derived rubella viruses (VDRV) in people with primary immune deficiencies (PID) challenges immunoglobulin (IG) preparations regarding their rubella neutralizing ability. This study confirmed potent rubella virus neutralization capacity of IG preparations and thus suggests protection of IG-treated PID patients against rubella. The study also highlights the importance of early diagnosis and timely given IG to prevent possible systemic spread of VDRV persisting locally in granulomas.

4.
Transfusion ; 64(1): 16-18, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982366

RESUMO

BACKGROUND: Human Circovirus 1 and 2 were recently described in a French hepatitis case and in two Chinese drug users. Because of its small size and presumable high resistance to both inactivation and removal by nanofilters, such viruses-if determined to be even pathogenic-should be considered with respect to the safety of plasma derivatives. We, therefore, investigated the prevalence and titer of these viruses in plasma pools before fractionation. METHODS AND MATERIALS: We tested for the presence of Human Circovirus 1 and 2 by qPCR in 48 plasma pools derived from healthy donors from Europe, USA, and Japan, corresponding to more than 200,000 plasma donations. RESULTS: We did not detect the presence of Human Circovirus 1 and 2 in any of the plasma pools, with a limit of detection of 300-600 genome copies per mL of plasma. CONCLUSIONS: These results indicate that high levels of circovirus are not widely prevalent in such donations.


Assuntos
Circovirus , Humanos , Circovirus/genética , Plasma , Europa (Continente) , Japão
5.
Biotechnol Bioeng ; 121(1): 131-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855050

RESUMO

Minute virus of mice (MMV) has contaminated biotechnological processes in the past and specific MMV testing is therefore recommended, if the production cell line is known to be permissive for this virus. Testing is widely done using cell-culture-based adventitious virus assays, yet MMV strains may differ in their in vitro cell tropism. Here, we investigated the growth characteristics of different MMV strains on A9 and 324K cells and identified significant differences in susceptibility of these widely used indicator cell lines to infection by different strains of MMV, which has implications for MMV detectability during routine testing of biotechnology process harvests. An MMV-specific polymerase chain reaction was evaluated as a more encompassing method and was shown as suitable replacement for cell culture-based detection of the different MMV strains, with the additional benefit that detection is more rapid and can be extended to other rodent parvoviruses that might contaminate biotechnological processes. Although no MMV contamination event of human-derived cell lines has happened in the past, biotechnological processes that are based on these also need to consider MMV-specific testing, as, for example, HEK293, a human-derived cell line commonly used in biopharmaceutical manufacturing, was shown as susceptible to productive MMV infection in the current work.


Assuntos
Vírus Miúdo do Camundongo , Parvovirus , Vírus , Animais , Humanos , Camundongos , Células HEK293 , Técnicas de Cultura de Células
7.
Biologicals ; 83: 101693, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37516085

RESUMO

Each process step in the manufacture of biological products requires expensive resources and reduces total process productivity. Since downstream processing of biologicals is the main cost driver, process intensification is a persistent topic during the entire product life cycle. We present here one approach for the intensification of bioprocesses by applying on-column virus inactivation using solvent/detergent (S/D) treatment during ion-exchange chromatography. The established purification process of a recombinant protein was used as a model to compare key process parameters (i.e., product yield, specific activity, impurity clearance) of the novel approach to the standard process protocol. Additional wash and incubation steps with and without S/D-containing buffers were introduced to ensure sufficient contact time to effectively eliminate enveloped viruses and to significantly decrease the amount of S/D reagents. Comparison of key process parameters demonstrated equivalent process performance. To assess the viral clearance capacity of the novel approach, XMuLV was spiked as model virus to the chromatographic load and all resulting fractions were analyzed by TCID50 and RT-qPCR. Data indicates the inactivation capability of on-column virus inactivation even at 10% of the nominal S/D concentration, although the mechanism of viral clearance needs further investigation.


Assuntos
Produtos Biológicos , Vírus , Detergentes/farmacologia , Produtos Biológicos/farmacologia , Inativação de Vírus , Solventes/farmacologia
8.
Biotechnol Bioeng ; 120(10): 2917-2924, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37337932

RESUMO

Cell-based manufacturing processes have occasionally been exposed to adventitious viruses, leading to manufacturing interruptions and unstable supply situations. The rapid progress of advanced therapy medicinal products needs innovative approaches to avoid any unwelcome reminder of the universal presence of viruses. Here, we investigated upstream virus filtration as a clearance step for any product too complex for downstream interventions. Culture media virus filtration was investigated with respect to virus clearance capacities under extreme conditions such as high process feed loading (up to ~19,000 L/m²), long duration (up to 34 days), and multiple process interruptions (up to 21 h). The small nonenveloped Minute virus of mice was used as relevant target virus, and as worse-case challenge for the investigated virus filters with a stipulated pore-size of about 20 nm. Certain filters-especially of the newer second generation-were capable of effective virus clearance despite the harsh regimen they were subjected to. The biochemical parameters for un-spiked control runs showed the filters to have no measurable impact on the composition of the culture media. Based on these findings, this technology seems to be quite feasible for large volume premanufacturing process culture media preparations.


Assuntos
Filtração , Vírus , Animais , Camundongos , Filtração/métodos , Técnicas de Cultura de Células , Contaminação de Medicamentos/prevenção & controle , Meios de Cultura
10.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175626

RESUMO

For decades, the ability of detergents to solubilize biological membranes has been utilized in biotechnological manufacturing to disrupt the lipid envelope of potentially contaminating viruses and thus enhance the safety margins of plasma- and cell-derived drugs. This ability has been linked to detergent micelles, which are formed if the concentration of detergent molecules exceeds the critical micelle concentration (CMC). Traditionally, the CMC of detergents is determined in deionized water (ddH2O), i.e., a situation considerably different from the actual situation of biotechnological manufacturing. This study compared, for five distinct detergents, the CMC in ddH2O side-by-side with two biopharmaceutical process intermediates relevant to plasma-derived (Immunoglobulin) and cell-derived (monoclonal antibody) products, respectively. Depending on the matrix, the CMC of detergents changed by a factor of up to ~4-fold. Further, the CMC in biotechnological matrices did not correlate with antiviral potency, as Triton X-100 (TX-100) and similar detergents had comparatively higher CMCs than polysorbate-based detergents, which are known to be less potent in terms of virus inactivation. Finally, it was demonstrated that TX-100 and similar detergents also have virus-inactivating properties if applied below the CMC. Thus, the presence of detergent micelles might not be an absolute prerequisite for the disruption of virus envelopes.


Assuntos
Detergentes , Vírus , Detergentes/farmacologia , Micelas , Inativação de Vírus , Octoxinol/farmacologia
11.
Biologicals ; 81: 101661, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36621353

RESUMO

The Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) collected historical data from 20 biopharmaceutical industry members on their experience with the in vivo adventitious virus test, the in vitro virus test, and the use of next generation sequencing (NGS) for viral safety. Over the past 20 years, only three positive in vivo adventitious virus test results were reported, and all were also detected in another concurrent assay. In more than three cases, data collected as a part of this study also found that the in vivo adventitious virus test had given a negative result for a sample that was later found to contain virus. Additionally, the in vivo adventitious virus test had experienced at least 21 false positives and had to be repeated an additional 21 times all while using more than 84,000 animals. These data support the consideration and need for alternative broad spectrum viral detection tests that are faster, more sensitive, more accurate, more specific, and more humane. NGS is one technology that may meet this need. Eighty one percent of survey respondents are either already actively using or exploring the use of NGS for viral safety. The risks and challenges of replacing in vivo adventitious virus testing with NGS are discussed. It is proposed to update the overall virus safety program for new biopharmaceutical products by replacing in vivo adventitious virus testing approaches with modern methodologies, such as NGS, that maintain or even improve the final safety of the product.


Assuntos
Produtos Biológicos , Vírus , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Vírus/genética , Contaminação de Medicamentos/prevenção & controle
12.
J Virus Erad ; 8(4): 100305, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36514716

RESUMO

Rhinoviruses (RVs) and coronaviruses (CoVs) upregulate host cell metabolic pathways such as glycolysis to meet their bioenergetic demands for rapid multiplication. Using the glycolysis inhibitor 2-deoxy-d-glucose (2-DG), we assessed the dose-dependent inhibition of viral replication of minor- and major-receptor group RVs in epithelial cells. 2-DG disrupted RV infection cycle by inhibiting template negative-strand as well as genomic positive-strand RNA synthesis, resulting in less progeny virus and RV-mediated cell death. Assessment of 2-DG's intracellular kinetics revealed that after a short-exposure to 2-DG, the active intermediate, 2-DG6P, is stored intracellularly for several hours. Finally, we confirmed the antiviral effect of 2-DG on pandemic SARS-CoV-2 and showed for the first time that it also reduces replication of endemic human coronaviruses. These results provide further evidence that 2-DG could be used as a broad-spectrum antiviral.

13.
J Infect Dis ; 226(8): 1396-1400, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36052810

RESUMO

After >2 years of the coronavirus disease 2019 (COVID-19) pandemic, immunoglobulins (IGs) contain highly potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies, based on the large proportion of United States (US) plasma donors who have gone through COVID-19 or vaccination against the virus. Neutralization of Omicron SARS-CoV-2 by antibodies generated after non-Omicron infection or vaccination has been lower though, raising concerns about the potency of IG against this new virus variant. Also, as plasma collected in the US remains the main source of IG, the neutralization of SARS-CoV-2 for plasma collected elsewhere has been less well studied. Here, we confirm Omicron neutralization by US as well as European Union plasma-derived IG lots.


Assuntos
Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais , COVID-19/imunologia , Europa (Continente) , Humanos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Estados Unidos
14.
Transfusion ; 62(12): 2454-2457, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36146943

RESUMO

BACKGROUND: The currently ongoing outbreak of monkeypox virus in many non-endemic countries around the world has also raised concerns about the safety of plasma-derived medicinal products. Based on what is known about the poxviridae, that is, that members are exceedingly large and carry a lipid envelope, effective removal and inactivation by plasma product manufacturing processes is expected. For the widely used solvent-detergent (S/D) treatments, however, poxviruses have been reported as potentially being a bit more resistant. STUDY DESIGN AND METHODS: Using a S/D mixture comprising tri-n-butyl-phosphate, polysorbate 80 and Triton X-100 (TX-100), inactivation of vaccinia virus (a model closely resembling monkeypox virus, both within the same genus, i.e., Orthopoxvirus) in a plasma-derived process intermediate was analyzed over 60 min. As use of Triton X-100 will, based on environmental concerns, be restricted, similar experiments were conducted with a physicochemically virtually identical alternative, Nereid. RESULTS: Fast inactivation of vaccinia virus to the assay detection limit, that is, reduction of infectivity by greater than 4 log10 within 10-20 min, was measured for the TX-100 S/D mixture. The alternative S/D mixture (Nereid instead of TX-100) was found fully equivalent. CONCLUSION: As for other lipid-enveloped viruses, treatment of process intermediates with S/D mixtures containing TX-100 or the closely related detergent Nereid are highly effective in inactivating poxviruses. Thus, the current spread of monkeypox virus does not compromise the viral safety margins of plasma-derived medicines.


Assuntos
Vírus , Humanos , Solventes , Lipídeos
15.
Front Med (Lausanne) ; 9: 924426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983096

RESUMO

Background: During the current pandemic, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralization capacity of the immunoglobulin (IG) supply has changed from undetectable for lots manufactured from plasma collected before the pandemic, to now highly potent. Objective: As antibodies induced by exposure to or vaccination against coronaviruses were shown to be cross-coronavirus reactive, it was of interest to understand whether SARS-CoV-2 neutralizing antibodies would result in increased functional IG potency also against seasonal coronaviruses. Methods: IG lots from US plasma collected before SARS-CoV-2 emerged and collected during the pandemic were analyzed by live virus neutralization assay for SARS-CoV-2 and seasonal human coronaviruses (HCoVs) NL63 and OC43 neutralizing antibody content. Results: Pre-pandemic IG showed no SARS-CoV-2 neutralizing antibody titers. However, IG lots produced from plasma of post-coronavirus disease 2019 (COVID-19) individuals exhibited robust anti-SARS-CoV-2 potency (1,267 IU/ml) which further increased ~4-fold in pandemic IG lots reaching a mean titer of 5,122 IU/ml. Nonetheless, neutralizing antibody potencies to the HCoVs NL63 and OC43 remained stable over this period, i.e., have not increased correspondingly. Conclusion: The present results show that cross-coronavirus-reactive antibodies are not cross-neutralizing, i.e., SARS-CoV-2 antibodies do not neutralize seasonal coronaviruses NL63 and OC43.

16.
Diagnostics (Basel) ; 12(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35626342

RESUMO

The COVID-19 pandemic has elicited the need to analyse and store large amounts of infectious samples for laboratory diagnostics. Therefore, there has been a demand for sample storage buffers that effectively inactivate infectious viral particles while simultaneously preserving the viral RNA. Here, we present a storage buffer containing guanidine-hydrochloride that fulfils both requirements. Its ability to preserve RNA stability was confirmed by RT-qPCR, and virus-inactivating properties were tested by tissue culture infectious dose assay. Our data revealed that RNA from samples diluted in this storage buffer was efficiently preserved. Spiking samples with RNase A resulted in RNAse concentrations up to 100 ng/mL being efficiently inhibited, whereas spiking samples with infectious SARS-CoV-2 particles demonstrated rapid virus inactivation. In addition, our buffer demonstrated good compatibility with several commercially available RNA extraction platforms. The presented guanidine-hydrochloride-based storage buffer efficiently inactivates infectious SARS-CoV-2 particles and supports viral RNA stability, leading to a reduced infection risk during sample analysis and an increased period for follow-up analysis, such as sequencing for virus variants. Because the presented buffer is uncomplicated to manufacture and compatible with a variety of commercially available test systems, its application can support and improve SARS-CoV-2 laboratory diagnostics worldwide.

17.
Immunol Res ; 70(3): 365-370, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266077

RESUMO

Immune globulin (IG) is administered as measles postexposure prophylaxis (PEP) in people with primary immunodeficiency disorders or individuals not eligible for live virus vaccination. However, measles virus (MeV) neutralizing antibody (nAb) levels in plasma for fractionation and IG products fractionated thereof have declined. Here, the feasibility of producing a measles hyperimmune globulin (HIG) for PEP of high-risk individuals was investigated. Plasma samples (n = 384) were selected based on donor self-identification for previous MeV infection or vaccination, to determine the MeV-nAb content and compare it to the potency of plasma pools (n = 13) from the current IG manufacture. Convalescent donors have higher mean MeV-nAb concentrations (3.9 IU/mL) than vaccinated donors (2.5 IU/mL), as previously reported. However, their selection would only result in a 1.4-fold elevated nAb concentration compared to current plasma pools, which is not sufficient for HIG production. Interestingly, thirty-two donors (8%) had a MeV-nAb concentration of ≥ 8 IU/mL. The selective use of these plasma donations would result in sixfold higher plasma pool concentrations, which should permit the manufacture of the measles HIG. Further, the longitudinal analysis of a subset of individuals who repeatedly donated plasma at a high frequency revealed only a minor decline (~ 30%) of MeV-nAb levels. Repeat donations of such high-potency donors would thus facilitate the production of the measles HIG. Due to its markedly raised MeV-nAb concentration compared to standard IG, such preparation could significantly shorten infusion time and thus improve the treatment experience for both physicians and patients, especially infants.


Assuntos
Anticorpos Neutralizantes , Sarampo , Anticorpos Antivirais , Estudos de Viabilidade , Humanos , Imunoglobulina G , Imunoglobulinas Intravenosas/uso terapêutico , Lactente , Sarampo/prevenção & controle , Profilaxia Pós-Exposição
18.
Front Med (Lausanne) ; 9: 822316, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242786

RESUMO

In a SARS-CoV-2 seroprevalence study conducted with 1,655 working adults in spring of 2020, 12 of the subjects presented with positive neutralization test (NT) titers (>1:10). They were here followed up for 1 year to assess their Ab persistence. We report that 7/12 individuals (58%) had NT_50 titers ≥1:50 and S1-specific IgG ≥50 BAU/ml 1 year after mild COVID-19 infection. S1-specific IgG were retained until a year when these levels were at least >60 BAU/ml at 3 months post-infection. For both the initial fast and subsequent slow decline phase of Abs, we observed a significant correlation between NT_50 titers and S1-specific IgG and thus propose S1-IgG of 60 BAU/ml 3 months post-infection as a potential threshold to predict neutralizing Ab persistence for 1 year. NT_50 titers and S1-specific IgG also correlated with circulating S1-specific memory B-cells. SARS-CoV-2-specific Ab levels after primary mRNA vaccination in healthy controls were higher (Geometric Mean Concentration [GMC] 3158 BAU/ml [CI 2592 to 3848]) than after mild COVID-19 infection (GMC 82 BAU/ml [CI 48 to 139]), but showed a stronger fold-decline within 5-6 months (0.20-fold, to GMC 619 BAU/ml [CI 479 to 801] vs. 0.56-fold, to GMC 46 BAU/ml [CI 26 to 82]). Of particular interest, the decline of both infection- and vaccine-induced Abs correlated with body mass index. Our data contribute to describe decline and persistence of SARS-CoV-2-specific Abs after infection and vaccination, yet the relevance of the maintained Ab levels for protection against infection and/or disease depends on the so far undefined correlate of protection.

19.
Vox Sang ; 117(6): 780-788, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35298841

RESUMO

This review, written from the perspective of the plasma industry, discusses plasma procurement and plasma product safety in light of the COVID-19 pandemic. The COVID-19 pandemic impacted the whole world and, therefore, not unexpectedly, the pharmaceutical industry too. In spite of this, the plasma protein industry has continued to provide life saving therapies to critically ill patients. Moreover, companies have collected COVID convalescent plasma (CP) to support development of investigational therapies, for example, hyperimmune globulins to potentially treat SARS-CoV-2 infection, and collaborated with those collecting COVID CP for direct transfusion, which has been made available under emergency use in the United States. For plasma that is fractionated to become a therapy, general knowledge of coronaviruses and numerous new studies on the structure and function of SARS-CoV-2 provide reassurance that existing industry precautions, including donor selection, as well as virus inactivation and removal steps during the manufacturing process are sufficient to maintain the high standards of virus safety of plasma products. The pandemic also revealed the vulnerability and inadequacy of the current plasma ecosystem. There is a need for more plasma to be collected around the world to meet the growing need for safe and efficacious plasma-derived therapies. This requires outdated regulatory and policy restrictions to be realigned with current scientific evidence. More countries around the world should be in a position to contribute to global supply of plasma so that patients with life-threatening conditions - and often no alternative therapeutic solutions - have better access to care.


Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/terapia , Ecossistema , Humanos , Imunização Passiva/efeitos adversos , Pandemias , SARS-CoV-2 , Estados Unidos , Soroterapia para COVID-19
20.
NPJ Vaccines ; 7(1): 22, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181655

RESUMO

SARS-CoV-2 neutralizing antibodies have been suggested to reflect the efficacy of COVID-19 vaccines. This study reports the direct comparison of the SARS-CoV-2 neutralizing antibody response elicited by a protein- (NVX-CoV2373), an mRNA- (Comirnaty), and a vector-based (Vaxzevria) COVID-19 vaccine, calibrated against the WHO international SARS-CoV-2 antibody standard, and further supports the use of neutralizing antibody levels as a correlate of protection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA