Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 30(28): 1910562, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32684903

RESUMO

The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from trans-Pt(PEt3)2(C≡C-C6H5-C≡N)(C≡C-C6H5-COO-Cholesterol), are described and designated as PE1-CN-Chol. Polarized optical microscopy, differential scanning calorimetry, and wide-angle X-ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase. Cooling to room temperature leads to the formation of a cholesteric liquid crystal glass. Scanning tunneling microscopy of a PE1-CN-Chol monolayer reveals self-assembly at the solid-liquid interface with an array of two molecules arranged in pairs, oriented head-to-head through the CN groups, giving rise to a lamella arrangement. The lamella structure obtained from molecular dynamics calculations shows a clear phase separation between the conjugated platinum acetylide and the hydrophobic cholesterol moiety with the lamellae separation distance being 4.0 nm. Ultrafast transient absorption and flash photolysis spectra of the glass show intersystem crossing to the triplet state occurring within 100 ps following excitation. The triplet decay time of the film compared to aerated and deoxygenated solutions is consistent with oxygen quenching at the film surface but not within the film. The high chromophore concentration, high glass thermal stability, and long triplet lifetime in air show that these materials have potential as nonlinear absorbing materials.

2.
Phys Chem Chem Phys ; 21(48): 26420-26429, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31774073

RESUMO

To develop quantitative structure-spectroscopic property relationships in platinum acetylides, we investigated the triplet state behavior of nominally centrosymmetric chromophores trans-Pt(PBu3)2(C[triple bond, length as m-dash]C-Phenyl-X)2, where X = diphenylamino, NH2, OCH3, t-Bu, CH3, H, F, benzothiazole, CF3, CN, and NO2. We measured ground state absorption, phosphorescence, excitation and triplet state absorption spectra and triplet lifetimes. By DFT we calculated the phosphorescence emission energy (ET), the spin density on the end cap (SD(X)), triplet state geometry and the distance between the triplet centroid and the central platinum atom (RS-Pt(X)). Compounds with electron-donating X have smaller triplet state lifetime, blue-shifted phosphorescence and larger triplet potential energy surface displacement associated with the C[triple bond, length as m-dash]C bond. Compounds with electron-withdrawing X have larger triplet lifetime, red-shifted phosphorescence and smaller triplet potential energy surface displacement associated with the C[triple bond, length as m-dash]C bond. The range of spin-orbit-coupling between the platinum atom and the triplet centroid was determined to be 6 Å. The quantity RS-Pt is shown to be a linear function of one-dimensional well length calculated from experimental ET. The multiple examples demonstrate RS-Pt is a useful descriptor for analyzing triplet state behavior.

3.
J Phys Chem A ; 121(29): 5442-5449, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28650633

RESUMO

With the goal of elucidating electronic and conformational effects on structure-spectroscopic property relationships in platinum acetylides, we synthesized a series of nominally centrosymmetric chromophores trans-Pt(PBu3)2(C≡C-Phenyl-X)2, where X = diphenylamino (DPA), NH2, OCH3, t-Bu, CH3, H, F, benzothiazole (BTH), CF3, CN, and NO2. We collected one- and two-photon absorption spectra and also performed density functional theory (DFT) and time-dependent (TD) DFT calculations on the ground- and excited-state properties of these compounds. The DFT calculations revealed facile rotation between the two ligands, suggesting that the compounds exhibit nonplanar ground-state conformations in solution. TDDFT calculation of the S1 state energy and transition dipole moment for a nonplanar conformation gave good agreement with experiment. Two-photon absorption spectra obtained from these compounds allowed estimation of the change of permanent electric dipole moment upon vertical excitation from ground state to S1 state. The values are small Δµ < 1.0 D for neutral substituents such as CH3, H, and F but increase sharply to Δµ ≈ 11 D for electron-accepting NO2. When in a nonplanar conformation, the corresponding calculated Δµ values showed good agreement with the experimental data indicating that the two-photon spectra result from nonplanar ground-state conformations. Previously studied related chromophores having extended conjugation ( Rebane, A.; Drobizhev, M.; Makarov, N. S.; Wicks, G.; Wnuk, P.; Stepanenko, Y.; Haley, J. E.; Krein, D. M.; Fore, J. L.; Burke, A. R.; Slagle, J. E.; McLean, D. G.; Cooper, T. M. J. Phys. Chem. A 2014 , 118 , 3749 - 3759 ) show similar dependence of Δµ on the substituents, which allows us to conclude that the excited-state properties of these floppy chromophores are a function of the electronic properties of the substituents, ligand size, and nonplanar molecular conformation.

4.
J Phys Chem A ; 118(21): 3749-3759, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24785544

RESUMO

We study instantaneous two-photon absorption (2PA) in a series of nominally quasi-centrosymmetric trans-bis(tributylphosphine)-bis-(4-((9,9-diethyl-7-ethynyl-9H-fluoren-2-yl) ethynyl)-R)-platinum complexes, where 11 different substituents, R = N(phenyl)2(NPh2), NH2, OCH3, t-butyl, CH3, H, F, CF3, CN, benzothiazole, and NO2, represent a range of electron-donating (ED) and electron-withdrawing (EW) strengths, while the Pt core acts as a weak ED group. We measure the 2PA cross section in the 540-810 nm excitation wavelength range by complementary femtosecond two-photon excited fluorescence (2PEF) and nonlinear transmission (NLT) methods and compare the obtained values to those of the Pt-core chromophore and the corresponding noncentrosymmetric side group (ligand) chromophores. Peak 2PA cross sections of neutral and ED-substituted Pt complexes occur at S0 → Sn transitions to higher energy states, above the lowest-energy S0 → S1 transition, and the corresponding values increase systematically with increasing ED strength, reaching maximum value, σ2 ∼ 300 GM (1 GM = 10-50 cm4 s), for R = NPh2. At transition energies overlapping with the lowest-energy S0 → S1 transition in the one-photon absorption (1PA) spectrum, the same neutral and ED-substituted Pt complexes show weak 2PA, σ2 < 30-100 GM, which is in agreement with the nearly quadrupolar structure of these systems. Surprisingly, EW-substituted Pt complexes display a very different behavior, where the peak 2PA of the S0 → S1 transition gradually increases with increasing EW strength, reaching values σ2 = 700 GM for R = NO2, while in the S0 → Sn transition region the peak 2PEF cross section decreases. We explained this effect by breaking of inversion symmetry due to conformational distortions associated with low energy barrier for ground-state rotation of the ligands. Our findings are corroborated by theoretical calculations that show large increase of the permanent electric dipole moment change in the S0 → S1 transition when ligands with strong EW substituents are twisted by 90° relative to the planar chromophore. Our NLT results in the S0 → S1 transition region are quantitatively similar to those obtained from the 2PEF measurement. However, at higher transition energy corresponding to S0 → Sn transition region, the NLT method yields effective multiphoton absorption stronger than the 2PEF measurement in the same systems. Such enhancement is observed in all Pt complexes as well as in all ligand chromophores studied, and we tentatively attribute this effect to nearly saturated excited-state absorption (ESA), which may occur if 2PA from the ground state is immediately followed by strongly allowed 1PA to higher excited states.

5.
J Phys Chem A ; 116(1): 139-49, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22077595

RESUMO

To develop a structure-spectroscopic property relationship in platinum acetylides having poly(aromatic hydrocarbon) ligands, we synthesized a series of chromophores with systematic variation in the number of fused aromatic rings (nFAR) and ligand topology (polyacene (L), polyphenanthrene (Z), or compact(C)). We measured ground-state absorption, fluorescence, and phosphorescence spectra. We also performed nanosecond and femtosecond transient absorption experiments. To extend the range of compounds in the structure-property relationship, we did DFT calculations on an expanded series of chromophores. Both the DFT results and experiments show that the S(1) and T(1) state energies are a function of both nFAR and the ligand topology. In the L chromophores, the S(1) and T(1) state energies decrease linearly with nFAR. In contrast, the S(1) and T(1) state energies of the Z chromophores oscillate around a fixed value with increasing nFAR. The C chromophores have behavior intermediate between the L and Z chromophores. A parallel series of calculations on the ligands shows the same behavior. The S(1)-S(n) energy obtained from ultrafast time-resolved spectra has a linear variation in nFAR. The rate constant for nonradiative decay, k(nr), was calculated from the S(1) state lifetime and decreases with an increasing number of π electrons in the aromatic ring. The result is consistent with the spin-orbit coupling caused by the central platinum heavy atom decreasing with larger nFAR. The present work shows that the framework developed for the analysis of poly(aromatic hydrocarbon) properties is useful for the understanding of the corresponding platinum acetylide complexes.

6.
J Phys Chem A ; 115(17): 4255-62, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21456577

RESUMO

We investigate two-photon absorption (2PA) in a series of fluorenyl-based 9,9-diethyl-2-ethynyl-7-((4-R-phenyl)ethynyl)-9,9a-dihydro-4aH-fluorene chromophores with R being various electron donating (ED) and electron withdrawing (EW) groups. We use wavelength-tunable femtosecond laser pulses to measure the 2PA cross sections in the lowest dipole-allowed transition and show that the substituents with stronger ED or EW character enhance the peak 2PA cross section (up to σ(2) ∼ 60-80 GM) while the neutral substituents lead to smaller cross sections, σ(2) < 10 GM. We apply two-level approximation to establish a quantitative relation between the 2PA in the pure electronic transition (0-0) and the corresponding change of the permanent electric dipole moment upon the excitation (Δµ). This relation is elucidated by comparing Δµ values obtained from the 2PA measurements with quantum-chemical calculations and with measurements of solvatochromic shifts in a series of solvents. We show that the calculated Δµ correlate well with the values obtained from the 2PA spectroscopy. The Δµ values obtained from the solvatochromic shifts agree well with the above two methods for the chromophores with neutral or weak EW or ED substituents. On the other hand, stronger EW or ED end groups give much larger Stokes shifts, which lead to an overestimation of the Δµ values. We tentatively attribute this effect to the excitation-induced electronic density change occurring predominantly at the substituent side of the molecule, which causes the effective point dipole associated with the Δµ to interact more strongly with the surrounding solvent.


Assuntos
Elétrons , Fluorenos/química , Fótons , Estrutura Molecular
7.
J Phys Chem A ; 115(3): 265-73, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21171643

RESUMO

To explore spectroscopic structure-property relationships in platinum acetylides, we synthesized a series of complexes having the molecular formula trans-bis(tributylphosphine)-bis(4-((9,9-diethyl-7-ethynyl-9H-fluoren-2-yl)ethynyl)-R)-platinum. The substituent, R = NH(2), OCH(3), N(phenyl)(2), t-butyl, CH(3), H, F, benzothiazole, CF(3), CN, and NO(2), was chosen for a systematic variation in electron-donating and -withdrawing properties as described by the Hammett parameter σ(p). UV/vis, fluorescence, and phosphorescence spectra, transient absorption spectra on the fs-ps time scale, and longer time scale flash photolysis on the ns time scale were collected. DFT and TDDFT calculations of the T(1) and S(1) energies were performed. The E(S) and E(T) values measured from linear spectra correlate well with the calculated results, giving evidence for the delocalized MLCT character of the S(1) state and confinement of the T(1) exciton on one ligand. The calculated T(1) state dipole moment ranges from 0.5 to 14 D, showing the polar, charge-transfer character of the T(1) state. The ultrafast absorption spectra have broad absorption bands from 575 to 675 nm and long wavelength contribution, which is shown from flash photolysis measurements to be from the T(1) state. The T(1) energy obtained from phosphorescence, the T(1)-T(n) transition energy obtained from flash photolysis measurements, and the triplet-state radiative rate constant are functions of the calculated spin density distribution on the ligand. The calculations show that the triplet exciton of chromophores with electron-withdrawing substituents is localized away from the central platinum atom, red-shifting the spectra and increasing the triplet-state lifetime. Electron-donating substituents have the opposite effect on the location of the triplet exciton, the spectra, and the triplet-state lifetime. The relation between the intersystem crossing rate constant and the S(1)-T(1) energy gap shows a Marcus relationship with a reorganization energy of 0.83 eV. The calculations show that intersystem crossing occurs by conversion from a nonpolar, delocalized S(1) state to a polar, charge-transfer T(1) state confined to one ligand, accompanied by conformation changes and charge transfer, supporting the experimental evidence for Marcus behavior.


Assuntos
Elétrons , Compostos de Platina/química , Análise Espectral
8.
Inorg Chem ; 46(16): 6483-94, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17622140

RESUMO

To explore the photophysics of platinum acetylide chromophores with strong two-photon absorption cross-sections, we have investigated the synthesis and spectroscopic characterization of a series of platinum acetylide complexes that feature highly pi-conjugated ligands substituted with pi-donor or -acceptor moieties. The molecules (numbered 1-4) considered in the present work are analogs of bis(phenylethynyl)bis(tributylphosphine)platinum(II) complexes. Molecule 1 carries two alkynyl-benzothiazolylfluorene ligands, and molecule 2 has two alkynyl-diphenylaminofluorene ligands bound to the central platinum atom. Compounds 3 and 4 possess two dihexylaminophenyl substituents at their ends and differ by the number of platinum atoms in the oligomer "core" (one vs two in 3 and 4, respectively). The ligands have strong effective two-photon absorption cross-sections, while the heavy metal platinum centers give rise to efficient intersystem crossing to long-lived triplet states. Ultrafast transient absorption and emission spectra demonstrate that one-photon excitation of the chromophores produces an S1 state delocalized across the two conjugated ligands, with weak (excitonic) coupling through the platinum centers. Intersystem crossing occurs rapidly (Kisc approximately 1011 s-1) to produce the T1 state, which is possibly localized on a single conjugated fluorenyl ligand. The triplet state is strongly absorbing (epsilonTT > 5 x 104 M-1 cm-1), and it is very long-lived (tau > 100 micro s). Femtosecond pulses were used to characterize the two-photon absorption properties of the complexes, and all of the chromophores are relatively efficient two-photon absorbers in the visible and near-infrared region of the spectrum (600-800 nm). The complexes exhibit maximum two-photon absorption at a shorter wavelength than 2lambda for the one-photon band, consistent with the dominant two-photon transition arising from a two-photon-allowed gerade-gerade transition. Nanosecond transient absorption experiments carried out on several of the complexes with excitation at 803 nm confirm that the long-lived triplet state can be produced efficiently via a sequence involving two-photon excitation to produce S1, followed by intersystem crossing to produce T1.

9.
J Phys Chem A ; 110(50): 13370-8, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17165861

RESUMO

To determine structure-optical property relationships in asymmetric platinum acetylide complexes, we synthesized the compounds trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-2), trans-Pt(PBu3)2(C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE1-3) and trans-Pt(PBu3)2(C[triple bond]C-C6H4-C[triple bond]CC6H5)(C[triple bond]C-C6H4-C[triple bond]C-C6H4-C[triple bond]CC6H5) (PE2-3) that have different ligands on either side of the platinum and compared their spectroscopic properties to the symmetrical compounds PE1, PE2 and PE3. We measured ground state absorption, fluorescence, phosphorescence and triplet state absorption spectra and performed density functional theory (DFT) calculations of frontier orbitals, lowest lying singlet states, triplet state geometries and energies. The absorption and emission spectra give evidence the singlet exciton is delocalized across the central platinum atom. The phosphorescence from the asymmetric complexes comes from the largest ligand. Time-dependent (TD) DFT calculations show the S1 state has mostly highest occupied molecular orbital (HOMO) --> lowest unoccupied molecular orbital (LUMO) character, with the LUMO delocalized over the chromophore. In the asymmetric chromophores, the LUMO resides on the larger ligand, suggesting the S1 state has interligand charge transfer character. The triplet state geometries obtained from the DFT calculations show distortion on the lowest energy ligand, whereas the other ligand has the ground state geometry. The calculated trend in the triplet state energies agrees very well with the experimental trend. Calculations of triplet state spin density also show the triplet exciton is confined to one ligand. In the asymmetric complexes the spin density is confined to the largest ligand. The results show Kasha's rule applies to these complexes, where the triplet exciton moves to the lowest energy ligand.

10.
J Phys Chem A ; 110(13): 4369-75, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16571040

RESUMO

In this work, we describe the spectroscopic properties of a series of platinum complexes containing one acetylide ligand per platinum, having the chemical formula trans-Pt(PBu(3))(2)((C[triple bond]CC(6)H(4))(n)()-H)Cl, n = 1-3 (designated as half-PEn-Pt) and compare their spectroscopic behavior with the well-characterized series trans-Pt(PBu(3))(2)((C[triple bond]CC(6)H(4))(n)-H)(2), n = 1-3 (designated as PEn-Pt). This comparison aims to determine if the triplet state of PEn-Pt is confined to one ligand or delocalized across the central platinum atom. We measured ground-state absorption spectra, fluorescence spectra, phosphorescence spectra, and triplet-state absorption spectra. The ground-state absorption spectra and fluorescence spectra both showed a blue shift when comparing half-PEn-Pt with PEn-Pt, showing the S(1) state is delocalized across the platinum. In contrast, the phosphorescence spectra of the two types of compounds had the same 0-0 band energy, showing the T(1) state was confined to one ligand in PEn-Pt. The triplet state absorption spectra blue shifted when comparing half-PEn-Pt with PEn-Pt, showing the T(n) state was delocalized across the central platinum. This comparison supports recently published work that suggested this confinement effect (Rogers, J. E et al. J. Chem. Phys. 2005, 122, 214701).

11.
J Am Chem Soc ; 125(43): 13112-9, 2003 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-14570484

RESUMO

We report here the combined use of computational chemistry and low-temperature NMR spectroscopy to probe the mechanism of a highly stereoselective glycosylation reaction employing 2,3-anhydrofuranosyl glycosyl sulfoxides (2 and 4). The reaction involves a two-step process that is carried out in one pot. In the first step, the sulfoxide is reacted with triflic anhydride leading to the formation of a single intermediate. Using NMR spectroscopy, we have established the structure of this intermediate as a glycosyl triflate. In the second step, the acceptor alcohol is added to the reaction mixture, which leads to the highly stereocontrolled formation of the glycoside product. The structure of the major product is consistent with a pathway involving an S(N)2-like displacement of the triflate by the alcohol. In the predominant intermediate that is formed, there is a trans relationship between the triflate group and epoxide. Therefore, in the glycoside product there is a cis relationship between the epoxide and the aglycone. In addition to providing insight into these reaction pathways, these investigations have also allowed us to identify conditions under which the glycosylations can be made to proceed with even greater stereoselectivity and in higher yield.


Assuntos
Furanos/química , Glicosídeos/química , Sulfóxidos/química , Temperatura Baixa , Glicosídeos/síntese química , Glicosilação , Ressonância Magnética Nuclear Biomolecular , Estereoisomerismo , Sulfóxidos/metabolismo , Termodinâmica
12.
J Org Chem ; 67(14): 4965-7, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-12098314

RESUMO

The synthesis of a series of 2-(alkylamino)pyridines (1) in three steps from 2-aminopyridine (4) is reported. The products were obtained in 67-91% overall yield from 4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA