Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Talanta ; 271: 125737, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38309113

RESUMO

In this work a sample pretreatment approach assumed liquid-liquid microextraction based on the in situ formation of a hydrophobic natural deep eutectic solvent on a hydrophobic membrane impregnated with natural terpenoid was developed. The procedure included alkaline hydrolysis of a food sample containing fat to form fatty acids, which acted as precursors for the in situ formation of the deep eutectic solvent with natural terpenoid. Two processes were observed on the membrane surface: in situ formation of the hydrophobic deep eutectic solvent and liquid-liquid microextraction of the target analytes. After microextraction, the membrane containing the analytes was easily removed from the sample solution. The developed approach was applied to the separation and preconcentration of hydrophobic organochlorine pesticides (ɑ-hexachlorocyclohexane and γ-hexachlorocyclohexane) from a hydrophobic sample matrix (peanut paste), followed by their determination by gas chromatography with electron capture detection. Under optimal conditions, the limits of detection and quantification for both analytes were 0.3 and 1.0 µg kg-1, respectively. The procedure allowed the separation of fat-soluble analytes from a complex sample matrix with a high content of fat. The extraction recoveries were in the range of 93-95 %.


Assuntos
Arachis , Microextração em Fase Líquida , Hexaclorocicloexano , Solventes Eutéticos Profundos , Hidrólise , Solventes , Terpenos , Limite de Detecção
2.
Talanta ; 252: 123868, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041318

RESUMO

This study describes a miniaturized approach for liquid-liquid microextraction based on mass transfer into low volume of deep eutectic solvent and magnetic phase separation, using specially produced magnetic chromium dioxide nanoparticles with a hydrophobic surface layer of fatty acids. The nanoparticles modified with fatty acid helped to recover low volumes of viscous hydrophobic deep eutectic solvent-based extract reproducibly and easily (up to 10 µL) in a microextraction procedure with the application of magnetic forces. It was demonstrated that the collector properties depend on nanoparticles' surface and magnetic characteristics. The developed approach was implemented for the separation and preconcentration of trace fluoroquinolone antibiotics from environmental waters prior to their determination by high-performance liquid chromatography with fluorometric detection as a model analytical task. The limits of detection, calculated from a blank test based on 3σ, were 0.01 µg L-1 for ofloxacin, 0.02 µg L-1 for lomefloxacin and fleroxacin, and 0.04 µg L-1 for norfloxacin. The procedure provides significant solvent reduction and high enrichment factors. The approach is green, which is proved by the analytical eco-scale assessment tool with the total score equal to 85 out of 100.


Assuntos
Microextração em Fase Líquida , Microextração em Fase Líquida/métodos , Solventes/química , Solventes Eutéticos Profundos , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão , Fenômenos Magnéticos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA