Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0152424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953632

RESUMO

The hydroxyacid glycolate is a highly abundant carbon source in the environment. Glycolate is produced by unicellular photosynthetic organisms and excreted at petagram scales to the environment, where it serves as growth substrate for heterotrophic bacteria. In microbial metabolism, glycolate is first oxidized to glyoxylate by the enzyme glycolate oxidase. The recently described ß-hydroxyaspartate cycle (BHAC) subsequently mediates the carbon-neutral assimilation of glyoxylate into central metabolism in ubiquitous Alpha- and Gammaproteobacteria. Although the reaction sequence of the BHAC was elucidated in Paracoccus denitrificans, little is known about the regulation of glycolate and glyoxylate assimilation in this relevant alphaproteobacterial model organism. Here, we show that regulation of glycolate metabolism in P. denitrificans is surprisingly complex, involving two regulators, the IclR-type transcription factor BhcR that acts as an activator for the BHAC gene cluster, and the GntR-type transcriptional regulator GlcR, a previously unidentified repressor that controls the production of glycolate oxidase. Furthermore, an additional layer of regulation is exerted at the global level, which involves the transcriptional regulator CceR that controls the switch between glycolysis and gluconeogenesis in P. denitrificans. Together, these regulators control glycolate metabolism in P. denitrificans, allowing the organism to assimilate glycolate together with other carbon substrates in a simultaneous fashion, rather than sequentially. Our results show that the metabolic network of Alphaproteobacteria shows a high degree of flexibility to react to the availability of multiple substrates in the environment.IMPORTANCEAlgae perform ca. 50% of the photosynthetic carbon dioxide fixation on our planet. In the process, they release the two-carbon molecule glycolate. Due to the abundance of algae, massive amounts of glycolate are released. Therefore, this molecule is available as a source of carbon for bacteria in the environment. Here, we describe the regulation of glycolate metabolism in the model organism Paracoccus denitrificans. This bacterium uses the recently characterized ß-hydroxyaspartate cycle to assimilate glycolate in a carbon- and energy-efficient manner. We found that glycolate assimilation is dynamically controlled by three different transcriptional regulators: GlcR, BhcR, and CceR. This allows P. denitrificans to assimilate glycolate together with other carbon substrates in a simultaneous fashion. Overall, this flexible and multi-layered regulation of glycolate metabolism in P. denitrificans represents a resource-efficient strategy to make optimal use of this globally abundant molecule under fluctuating environmental conditions.

2.
Appl Environ Microbiol ; 89(7): e0023823, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37318336

RESUMO

Metabolic degeneracy describes the phenomenon that cells can use one substrate through different metabolic routes, while metabolic plasticity, refers to the ability of an organism to dynamically rewire its metabolism in response to changing physiological needs. A prime example for both phenomena is the dynamic switch between two alternative and seemingly degenerate acetyl-CoA assimilation routes in the alphaproteobacterium Paracoccus denitrificans Pd1222: the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). The EMCP and the GC each tightly control the balance between catabolism and anabolism by shifting flux away from the oxidation of acetyl-CoA in the tricarboxylic acid (TCA) cycle toward biomass formation. However, the simultaneous presence of both the EMCP and GC in P. denitrificans Pd1222 raises the question of how this apparent functional degeneracy is globally coordinated during growth. Here, we show that RamB, a transcription factor of the ScfR family, controls expression of the GC in P. denitrificans Pd1222. Combining genetic, molecular biological and biochemical approaches, we identify the binding motif of RamB and demonstrate that CoA-thioester intermediates of the EMCP directly bind to the protein. Overall, our study shows that the EMCP and the GC are metabolically and genetically linked with each other, demonstrating a thus far undescribed bacterial strategy to achieve metabolic plasticity, in which one seemingly degenerate metabolic pathway directly drives expression of the other. IMPORTANCE Carbon metabolism provides organisms with energy and building blocks for cellular functions and growth. The tight regulation between degradation and assimilation of carbon substrates is central for optimal growth. Understanding the underlying mechanisms of metabolic control in bacteria is of importance for applications in health (e.g., targeting of metabolic pathways with new antibiotics, development of resistances) and biotechnology (e.g., metabolic engineering, introduction of new-to-nature pathways). In this study, we use the alphaproteobacterium P. denitrificans as model organism to study functional degeneracy, a well-known phenomenon of bacteria to use the same carbon source through two different (competing) metabolic routes. We demonstrate that two seemingly degenerate central carbon metabolic pathways are metabolically and genetically linked with each other, which allows the organism to control the switch between them in a coordinated manner during growth. Our study elucidates the molecular basis of metabolic plasticity in central carbon metabolism, which improves our understanding of how bacterial metabolism is able to partition fluxes between anabolism and catabolism.


Assuntos
Paracoccus denitrificans , Acetilcoenzima A/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo
3.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289174

RESUMO

During growth, microorganisms have to balance metabolic flux between energy and biosynthesis. One of the key intermediates in central carbon metabolism is acetyl coenzyme A (acetyl-CoA), which can be either oxidized in the citric acid cycle or assimilated into biomass through dedicated pathways. Two acetyl-CoA assimilation strategies in bacteria have been described so far, the ethylmalonyl-CoA pathway (EMCP) and the glyoxylate cycle (GC). Here, we show that Paracoccus denitrificans uses both strategies for acetyl-CoA assimilation during different growth stages, revealing an unexpected metabolic complexity in the organism's central carbon metabolism. The EMCP is constitutively expressed on various substrates and leads to high biomass yields on substrates requiring acetyl-CoA assimilation, such as acetate, while the GC is specifically induced on these substrates, enabling high growth rates. Even though each acetyl-CoA assimilation strategy alone confers a distinct growth advantage, P. denitrificans recruits both to adapt to changing environmental conditions, such as a switch from succinate to acetate. Time-resolved single-cell experiments show that during this switch, expression of the EMCP and GC is highly coordinated, indicating fine-tuned genetic programming. The dynamic metabolic rewiring of acetyl-CoA assimilation is an evolutionary innovation by P. denitrificans that allows this organism to respond in a highly flexible manner to changes in the nature and availability of the carbon source to meet the physiological needs of the cell, representing a new phenomenon in central carbon metabolism.IMPORTANCE Central carbon metabolism provides organisms with energy and cellular building blocks during growth and is considered the invariable "operating system" of the cell. Here, we describe a new phenomenon in bacterial central carbon metabolism. In contrast to many other bacteria that employ only one pathway for the conversion of the central metabolite acetyl-CoA, Paracoccus denitrificans possesses two different acetyl-CoA assimilation pathways. These two pathways are dynamically recruited during different stages of growth, which allows P. denitrificans to achieve both high biomass yield and high growth rates under changing environmental conditions. Overall, this dynamic rewiring of central carbon metabolism in P. denitrificans represents a new strategy compared to those of other organisms employing only one acetyl-CoA assimilation pathway.


Assuntos
Acetilcoenzima A/metabolismo , Acil Coenzima A/metabolismo , Carbono/metabolismo , Glioxilatos/metabolismo , Redes e Vias Metabólicas , Paracoccus denitrificans/metabolismo , Acetatos/metabolismo , Proteínas de Bactérias/genética , Paracoccus denitrificans/genética , Análise de Célula Única
4.
Mol Microbiol ; 106(3): 419-438, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833791

RESUMO

Most bacteria possess a peptidoglycan cell wall that determines their morphology and provides mechanical robustness during osmotic challenges. The biosynthesis of this structure is achieved by a large set of synthetic and lytic enzymes with varying substrate specificities. Although the biochemical functions of these proteins are conserved and well-investigated, the precise roles of individual factors and the regulatory mechanisms coordinating their activities in time and space remain incompletely understood. Here, we comprehensively analyze the autolytic machinery of the alphaproteobacterial model organism Caulobacter crescentus, with a specific focus on LytM-like endopeptidases, soluble lytic transglycosylases and amidases. Our data reveal a high degree of redundancy within each protein family but also specialized functions for individual family members under stress conditions. In addition, we identify two lytic transglycosylases and an amidase as new divisome components that are recruited to midcell at distinct stages of the cell cycle. The midcell localization of these proteins is affected by two LytM factors with degenerate catalytic domains, DipM and LdpF, which may serve as regulatory hubs coordinating the activities of multiple autolytic enzymes during cell constriction and fission respectively. These findings set the stage for in-depth studies of the molecular mechanisms that control peptidoglycan remodeling in C. crescentus.


Assuntos
Amidoidrolases/metabolismo , Caulobacter crescentus/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Divisão Celular , Parede Celular/metabolismo , Endopeptidases/metabolismo , Glicosiltransferases , Peptidoglicano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA