Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 57(16): 1937-1956.e8, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998584

RESUMO

The complex architecture of the murine fetus originates from a simple ball of pluripotent epiblast cells, which initiate morphogenesis upon implantation. In turn, this establishes an intermediate state of tissue-scale organization of the embryonic lineage in the form of an epithelial monolayer, where patterning signals delineate the body plan. However, how this major morphogenetic process is orchestrated on a cellular level and synchronized with the developmental progression of the epiblast is still obscure. Here, we identified that the small GTPase Rap1 plays a critical role in reshaping the pluripotent lineage. We found that Rap1 activity is controlled via Oct4/Esrrb input and is required for the transmission of polarization cues, which enables the de novo epithelialization and formation of tricellular junctions in the epiblast. Thus, Rap1 acts as a molecular switch that coordinates the morphogenetic program in the embryonic lineage, in sync with the cellular states of pluripotency.


Assuntos
Implantação do Embrião , Camadas Germinativas , Animais , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Morfogênese
2.
Nat Commun ; 13(1): 610, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105859

RESUMO

Lima1 is an extensively studied prognostic marker of malignancy and is also considered to be a tumour suppressor, but its role in a developmental context of non-transformed cells is poorly understood. Here, we characterise the expression pattern and examined the function of Lima1 in mouse embryos and pluripotent stem cell lines. We identify that Lima1 expression is controlled by the naïve pluripotency circuit and is required for the suppression of membrane blebbing, as well as for proper mitochondrial energetics in embryonic stem cells. Moreover, forcing Lima1 expression enables primed mouse and human pluripotent stem cells to be incorporated into murine pre-implantation embryos. Thus, Lima1 is a key effector molecule that mediates the pluripotency control of membrane dynamics and cellular metabolism.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto , Proliferação de Células , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Feminino , Masculino , Camundongos , Células-Tronco Pluripotentes/citologia
3.
EMBO Rep ; 22(11): e53048, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34515391

RESUMO

During implantation, the murine embryo transitions from a "quiet" into an active metabolic/proliferative state, which kick-starts the growth and morphogenesis of the post-implantation conceptus. Such transition is also required for embryonic stem cells to be established from mouse blastocysts, but the factors regulating this process are poorly understood. Here, we show that Ronin plays a critical role in the process by enabling active energy production, and the loss of Ronin results in the establishment of a reversible quiescent state in which naïve pluripotency is promoted. In addition, Ronin fine-tunes the expression of genes that encode ribosomal proteins and is required for proper tissue-scale organisation of the pluripotent lineage during the transition from blastocyst to egg cylinder stage. Thus, Ronin function is essential for governing the metabolic capacity so that it can support the pluripotent lineage's high-energy demands for cell proliferation and morphogenesis.


Assuntos
Desenvolvimento Embrionário , Células-Tronco Embrionárias , Animais , Blastocisto/metabolismo , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/metabolismo , Camundongos
4.
Sci Adv ; 7(11)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692105

RESUMO

During the peri-implantation stages, the mouse embryo radically changes its appearance, transforming from a hollow-shaped blastocyst to an egg cylinder. At the same time, the epiblast gets reorganized from a simple ball of cells to a cup-shaped epithelial monolayer enclosing the proamniotic cavity. However, the cavity's function and mechanism of formation have so far been obscure. Through investigating the cavity formation, we found that in the epiblast, the process of lumenogenesis is driven by reorganization of intercellular adhesion, vectoral fluid transport, and mitotic paracellular water influx from the blastocoel into the emerging proamniotic cavity. By experimentally blocking lumenogenesis, we found that the proamniotic cavity functions as a hub for communication between the early lineages, enabling proper growth and patterning of the postimplantation embryo.

5.
Arterioscler Thromb Vasc Biol ; 37(6): 1076-1086, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28428216

RESUMO

OBJECTIVE: Platelet function has been intensively studied in the adult organism. However, little is known about the function and hemostatic capacity of platelets in the developing fetus as suitable in vivo models are lacking. APPROACH AND RESULTS: To examine fetal platelet function in vivo, we generated a fetal thrombosis model and investigated light/dye-induced thrombus formation by intravital microscopy throughout gestation. We observed that significantly less and unstable thrombi were formed at embryonic day (E) 13.5 compared with E17.5. Flow cytometry revealed significantly lower platelet counts in E13.5 versus E17.5 fetuses versus adult controls. In addition, fetal platelets demonstrated changed activation responses of surface adhesion molecules and reduced P-selectin content and mobilization. Interestingly, we also measured reduced levels of the integrin-activating proteins Kindlin-3, Talin-1, and Rap1 during fetal development. Consistently, fetal platelets demonstrated diminished spreading capacity compared with adults. Transfusion of adult platelets into the fetal circulation led to rapid platelet aggregate formation even in young fetuses. Yet, retrospective data analysis of a neonatal cohort demonstrated no correlation of platelet transfusion with closure of a persistent ductus arteriosus, a process reported to be platelet dependent. CONCLUSIONS: Taken together, we demonstrate an ontogenetic regulation of platelet function in vivo with physiologically low platelet numbers and hyporeactivity early during fetal development shedding new light on hemostatic function during fetal life.


Assuntos
Plaquetas/metabolismo , Hemostasia , Ativação Plaquetária , Trombose/sangue , Animais , Moléculas de Adesão Celular/sangue , Bases de Dados Factuais , Modelos Animais de Doenças , Permeabilidade do Canal Arterial/sangue , Feminino , Idade Gestacional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Adesividade Plaquetária , Transfusão de Plaquetas , Nascimento Prematuro/sangue , Estudos Retrospectivos , Transdução de Sinais , Trombocitopenia/sangue
6.
Biochem Soc Trans ; 39(6): 1674-81, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22103506

RESUMO

Lymphatic vessels, the second vascular system of higher vertebrates, are indispensable for fluid tissue homoeostasis, dietary fat resorption and immune surveillance. Not only are lymphatic vessels formed during fetal development, when the lymphatic endothelium differentiates and separates from blood endothelial cells, but also lymphangiogenesis occurs during adult life under conditions of inflammation, wound healing and tumour formation. Under all of these conditions, haemopoietic cells can exert instructive influences on lymph vessel growth and are essential for the vital separation of blood and lymphatic vessels. LECs (lymphatic endothelial cells) are characterized by expression of a number of unique genes that distinguish them from blood endothelium and can be utilized to drive reporter genes in a lymph endothelial-specific fashion. In the present paper, we describe the Prox1 (prospero homeobox protein 1) promoter-driven expression of the fluorescent protein mOrange2, which allows the specific intravital visualization of lymph vessel growth and behaviour during mouse fetal development and in adult mice.


Assuntos
Genes Reporter/genética , Proteínas de Homeodomínio/genética , Linfangiogênese , Vasos Linfáticos/fisiologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Regiões Promotoras Genéticas/genética , Proteínas Supressoras de Tumor/genética , Animais , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA