Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804204

RESUMO

We report on the experimental realization of Pb1-xSnx Te pentagonal nanowires (NWs) with [110] orientation using molecular beam epitaxy techniques. Using first-principles calculations, we investigate the structural stability of NWs of SnTe and PbTe in three different structural phases: cubic, pentagonal with [001] orientation and pentagonal with [110] orientation. Within a semiclassical approach, we show that the interplay between ionic and covalent bonds favors the formation of pentagonal NWs. Additionally, we find that this pentagonal structure is more likely to occur in tellurides than in selenides. The disclination and twin boundary cause the electronic states originating from the NW core region to generate a conducting band connecting the valence and conduction bands, creating a symmetry-enforced metallic phase. The metallic core band has opposite slopes in the cases of Sn and Te twin boundaries, while the bands from the shell are insulating. We finally study the electronic and topological properties of pentagonal NWs unveiling their potential as a new platform for higher-order topology and fractional charge. These pentagonal NWs represent a unique case of intrinsic core-shell one-dimensional nanostructures with distinct structural, electronic and topological properties between the core and the shell region.

2.
Nanoscale ; 16(12): 6259-6267, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38450428

RESUMO

Newly discovered altermagnets are magnetic materials exhibiting both compensated magnetic order, similar to antiferromagnets, and simultaneous non-relativistic spin-splitting of the bands, akin to ferromagnets. This characteristic arises from specific symmetry operation that connects the spin sublattices. In this report, we show with ab initio calculations that semiconductive MnSe exhibits altermagnetic spin-splitting in the wurtzite phase as well as a critical temperature well above room temperature. It is the first material from such a space group identified to possess altermagnetic properties. Furthermore, we demonstrate experimentally through structural characterization techniques that it is possible to obtain thin films of both the intriguing wurtzite phase of MnSe and more common rock-salt MnSe using molecular beam epitaxy on GaAs substrates. The choice of buffer layers plays a crucial role in determining the resulting phase and consequently extends the array of materials available for the physics of altermagnetism.

3.
Sci Rep ; 14(1): 589, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182872

RESUMO

We investigate the full and half-shells of Pb1-xSnxTe topological crystalline insulator deposited by molecular beam epitaxy on the sidewalls of wurtzite GaAs nanowires (NWs). Due to the distinct orientation of the IV-VI shell with respect to the III-V core the lattice mismatch between both materials along the nanowire axis is less than 4%. The Pb1-xSnxTe solid solution is chosen due to the topological crystalline insulator properties above some critical concentrations of Sn (x ≥ 0.36). The IV-VI shells are grown with different compositions spanning from binary SnTe, through Pb1-xSnxTe with decreasing x value down to binary PbTe (x = 0). The samples are analysed by scanning transmission electron microscopy, which reveals the presence of (110) or (100) oriented binary PbTe and (100) Pb1-xSnxTe on the sidewalls of wurtzite GaAs NWs.

4.
Nanotechnology ; 35(5)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37879328

RESUMO

Distributed Bragg Reflectors (DBR) are well-established photonic structures that are used in many photonic applications. However, most of the DBRs are based on different materials or require post-process etching which can hinder integration with other components in the final photonic structure. Here, we demonstrate the fabrication of DBR structures consisting only of undoped boron nitride (BN) layers with high refractive index contrast by using metal-organic chemical vapor deposition (MOCVD). This has been achieved in a single process, without the need for any post-process etching. The difference in the refractive index of the component BN layers stems from different degrees of porosity of the individual BN layers, which is a direct result of a different growth temperature. The fabricated DBR structures consist of 15.5 pairs of BN layers and exhibit a reflectance of 87 ± 1% at the maximum. The wavelength of maximum reflectance can be tuned from 500 nm up to the infrared region (IR), by simply adjusting the growth periods of subsequent BN layers. We also demonstrate that the fabricated structures can be used to create an optical microcavity. The fabricated DBRs are very promising candidates for future applications, for example in combination with single-photon emitters in h-BN, which could allow the building of a cavity-based all-BN single-photon source.

5.
ACS Appl Mater Interfaces ; 15(28): 33838-33847, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418753

RESUMO

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation. We distinguish two growth modes: positive (2D materials nucleate on the irradiated regions) on graphene and tungsten disulfide (WS2) substrates, and negative (2D materials do not nucleate on the irradiated regions) on the graphene substrate. The growth mode is controlled by limiting the air exposure of the irradiated substrate and the time between irradiation and growth. We conducted Raman mapping, Kelvin-probe force microscopy, X-ray photoelectron spectroscopy, and density-functional theory modeling studies to investigate the selective growth mechanism. We conclude that the selective growth is explained by the competition of three effects: EB-induced defects, adsorption of carbon species, and electrostatic interaction. The method here is a critical step toward the industry-scale fabrication of 2D-materials-based devices.

6.
Nanotechnology ; 34(44)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37524071

RESUMO

Crystal orientation and strain mapping of an individual curved and asymmetrical core-shell hetero-nanowire (NW) is performed based on transmission electron microscopy. It relies on a comprehensive analysis of scanning nanobeam electron diffraction data obtained for 1.3 nm electron probe size. The proposed approach also handles the problem of appearing twinning defects on diffraction patterns and allows for the investigation of materials with high defect densities. Based on the experimental maps and their comparison with finite element simulations, the entire core-shell geometry including full three-dimensional strain distribution within the curved core-shell NW are obtained. Our approach represents, therefore, a low-dose quasi-tomography of the strain field within a nanoobject using only a single zone axis diffraction experiment. Our approach is applicable also for electron beam-sensitive materials for which performing conventional tomography is a difficult task.

7.
Nanoscale ; 15(8): 4143-4151, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36745383

RESUMO

Quantum dots consisting of an axial Zn0.97Mg0.03Te insertion inside a large-bandgap Zn0.9Mg0.1Te nanowire core are fabricated in a molecular-beam epitaxy system by employing the vapor-liquid-solid growth mechanism. In addition, this structure is coated with a thin ZnSe radial shell that forms a type-II interface with the dot semiconductor. The resulting radial electron-hole separation is evidenced by several distinct effects that occur in the presence of the ZnSe shell, including the optical emission redshift of about 250 meV, a significant decrease in emission intensity, an increase in the excitonic lifetime by one order of magnitude, and an increase in the biexciton binding energy. The type-II nanowire quantum dots where electrons and holes are radially separated constitute a promising platform for potential applications in the field of quantum information technology.

8.
Sci Rep ; 12(1): 6007, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397635

RESUMO

Incorporation of Bi into GaAs-(Ga,Al)As-Ga(As,Bi) core-shell nanowires grown by molecular beam epitaxy is studied with transmission electron microscopy. Nanowires are grown on GaAs(111)B substrates with Au-droplet assisted mode. Bi-doped shells are grown at low temperature (300 °C) with a close to stoichiometric Ga/As flux ratio. At low Bi fluxes, the Ga(As,Bi) shells are smooth, with Bi completely incorporated into the shells. Higher Bi fluxes (Bi/As flux ratio ~ 4%) led to partial segregation of Bi as droplets on the nanowires sidewalls, preferentially located at the nanowire segments with wurtzite structure. We demonstrate that such Bi droplets on the sidewalls act as catalysts for the growth of branches perpendicular to the GaAs trunks. Due to the tunability between zinc-blende and wurtzite polytypes by changing the nanowire growth conditions, this effect enables fabrication of branched nanowire architectures with branches generated from selected (wurtzite) nanowire segments.

9.
Nanotechnology ; 33(19)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874318

RESUMO

The occurrence of strain is inevitable for the growth of lattice mismatched heterostructures. It affects greatly the mechanical, electrical and optical properties of nano-objects. It is also the case for nanowires which are characterized by a high surface to volume ratio. Thus, the knowledge of the strain distribution in nano-objects is critically important for their implementation into devices. This paper presents an experimental data for II-VI semiconductor system. Scanning nanobeam electron diffraction strain mapping technique for hetero-nanowires characterized by a large lattice mismatch (>6% in the case of CdTe/ZnTe) and containing segments with nano-twins has been described. The spatial resolution of about 2 nm is 10 times better than obtained in synchrotron nanobeam systems. The proposed approach allows us to overcome the difficulties related to nanowire thickness variations during the acquisition of the nano-beam electron diffraction data. In addition, the choice of optimal parameters used for the acquisition of nano-beam diffraction data for strain mapping has been discussed. The knowledge of the strain distribution enables, in our particular case, the improvement of the growth model of extremely strained axial nanowires synthetized by vapor-liquid solid growth mechanism. However, our method can be applied for the strain mapping in nanowire heterostructures grown by any other method.

10.
Materials (Basel) ; 14(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576476

RESUMO

Results of comparative structural characterization of bare and Zn-covered ZnTe nanowires (NWs) before and after thermal oxidation at 300 °C are presented. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, and Raman scattering not only unambiguously confirm the conversion of the outer layer of the NWs into ZnO, but also demonstrate the influence of the oxidation process on the structure of the inner part of the NWs. Our study shows that the morphology of the resulting ZnO can be improved by the deposition of thin Zn shells on the bare ZnTe NWs prior to the oxidation. The oxidation of bare ZnTe NWs results in the formation of separated ZnO nanocrystals which decorate crystalline Te cores of the NWs. In the case of Zn-covered NWs, uniform ZnO shells are formed, however they are of a fine-crystalline structure or partially amorphous. Our study provides an important insight into the details of the oxidation processes of ZnTe nanostructures, which could be of importance for the preparation and performance of ZnTe based nano-devices operating under normal atmospheric conditions and at elevated temperatures.

11.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34438391

RESUMO

ZnTe/CdSe/(Zn, Mg)Te core/double-shell nanowires are grown by molecular beam epitaxy by employing the vapor-liquid-solid growth mechanism assisted with gold catalysts. A photoluminescence study of these structures reveals the presence of an optical emission in the near infrared. We assign this emission to the spatially indirect exciton recombination at the ZnTe/CdSe type II interface. This conclusion is confirmed by the observation of a significant blue-shift of the emission energy with an increasing excitation fluence induced by the electron-hole separation at the interface. Cathodoluminescence measurements reveal that the optical emission in the near infrared originates from nanowires and not from two-dimensional residual deposits between them. Moreover, it is demonstrated that the emission energy in the near infrared depends on the average CdSe shell thickness and the average Mg concentration within the (Zn, Mg)Te shell. The main mechanism responsible for these changes is associated with the strain induced by the (Zn, Mg)Te shell in the entire core/shell nanowire heterostructure.

12.
J Chem Phys ; 154(15): 154701, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887922

RESUMO

The rocksalt structure of ZnO has a very promising bandgap for optoelectronic applications. Unfortunately, this high-pressure phase is unstable under ambient conditions. This paper presents experimental results for rocksalt-type ZnO/MgO superlattices and theoretical considerations of the critical thickness of MgxZn1-xO layers. The correlations between the layer/spacer thickness ratio, elastic strain, chemical composition, and critical thickness are analyzed. The Matthews and Blakeslee model is revisited to find analytic conditions for the critical layer thickness resulting in phase transition. Our analysis shows that due to the decrease in misfit stresses below some critical limit, the growth of multiple quantum wells composed of rocksalt ZnO layers and MgO spacers is possible only for very large layer/spacer thickness ratios.

13.
ACS Appl Mater Interfaces ; 13(6): 7476-7484, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33529520

RESUMO

In this work, we study the thermal degradation of In-rich InxGa1-xN quantum wells (QWs) and propose explanation of its origin based on the diffusion of metal vacancies. The structural transformation of the InxGa1-xN QWs is initiated by the formation of small initial voids created due to agglomeration of metal vacancies diffusing from the layers beneath the QW. The presence of voids in the QW relaxes the mismatch stress in the vicinity of the void and drives In atoms to diffuse to the relaxed void surroundings. The void walls enriched in In atoms are prone for thermal decomposition, what leads to a subsequent disintegration of the surrounding lattice. The phases observed in the degraded areas of QWs contain voids partly filled with crystalline In and amorphous material, surrounded by the rim of high In-content InxGa1-xN or pure InN; the remaining QW between the voids contains residual amount of In. In the case of the InxGa1-xN QWs deposited on the GaN layer doped to n-type or on unintentionally doped GaN, we observe a preferential degradation of the first grown QW, while doping of the underlying GaN layer with Mg prevents the degradation of the closest InxGa1-xN QW. The reduction in the metal vacancy concentration in the InxGa1-xN QWs and their surroundings is crucial for making them more resistant to thermal degradation.

14.
Nanoscale ; 12(31): 16535-16542, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32790820

RESUMO

Thin layers of transition metal dichalcogenides have been intensively studied over the last few years due to their novel physical phenomena and potential applications. One of the biggest problems in laboratory handling and moving on to application-ready devices lies in the high sensitivity of their physicochemical properties to ambient conditions. We demonstrate that novel, in situ capping with an ultra-thin, aluminum film efficiently protects thin MoTe2 layers stabilizing their electronic transport properties after exposure to ambient conditions. The experiments have been performed on bilayers of 2H-MoTe2 grown by molecular beam epitaxy on large area GaAs(111)B substrates. The crystal structure, surface morphology and thickness of the deposited MoTe2 layers have been precisely controlled in situ with a reflection high energy electron diffraction system. As evidenced by high resolution transmission electron microscopy, MoTe2 films exhibit perfect arrangement in the 2H phase and the epitaxial relation to the GaAs(111)B substrates. After the growth, the samples were in situ capped with a thin (3 nm) film of aluminum, which oxidizes after exposure to ambient conditions. This oxide serves as a protective layer to the underlying MoTe2. Resistivity measurements of the MoTe2 layers with and without the cap, exposed to low vacuum, nitrogen and air, revealed a huge difference in their stability. The significant rise of resistance is observed for the unprotected sample while the resistance of the protected one is constant. Wide range temperature resistivity studies showed that charge transport in MoTe2 is realized by hopping with an anomalous hopping exponent of x ≃ 0.66, reported also previously for ultra-thin, metallic layers.

15.
Nano Lett ; 20(5): 3058-3066, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32105481

RESUMO

Monolayer transition-metal dichalcogenides (TMDs) manifest exceptional optical properties related to narrow excitonic resonances. However, these properties have been so far explored only for structures produced by techniques inducing considerable large-scale inhomogeneity. In contrast, techniques which are essentially free from this disadvantage, such as molecular beam epitaxy (MBE), have to date yielded only structures characterized by considerable spectral broadening, which hinders most of the interesting optical effects. Here, we report for the first time on the MBE-grown TMD exhibiting narrow and resolved spectral lines of neutral and charged exciton. Moreover, our material exhibits unprecedented high homogeneity of optical properties, with variation of the exciton energy as small as ±0.16 meV over a distance of tens of micrometers. Our recipe for MBE growth is presented for MoSe2 and includes the use of atomically flat hexagonal boron nitride substrate. This recipe opens a possibility of producing TMD heterostructures with optical quality, dimensions, and homogeneity required for optoelectronic applications.

16.
Nanotechnology ; 31(21): 215710, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32050170

RESUMO

Wurtzite CdTe and (Cd,Mn)Te nanowires embedded in (Cd,Mg)Te shells are grown by employing vapour-liquid-solid growth mechanism in a system for molecular beam epitaxy. A combined study involving cathodoluminescence, transmission electron microscopy and micro-photoluminescence is used to correlate optical and structural properties in these structures. Typical features of excitonic emission from individual wurtzite nanowires are highlighted including the emission energy of 1.65 eV, polarization properties and the appearance B-exciton related emission at high excitation densities. Angle dependent magneto-optical study performed on individual (Cd,Mn)Te nanowires reveals heavy-hole-like character of A-excitons typical for wurtzite structure and allows to determine the crystal field splitting, ΔCR. The impact of the strain originating from the lattice mismatched shell is discussed and supported by theoretical calculations.

17.
Nano Lett ; 19(10): 7324-7333, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500416

RESUMO

Nearly a 30% increase in the ferromagnetic phase transition temperature has been achieved in strained MnAs nanocrystals embedded in a wurtzite GaAs matrix. Wurtzite GaAs exerts tensile stress on hexagonal MnAs nanocrystals, preventing a hexagonal to orthorhombic structural phase transition, which in bulk MnAs is combined with the magnetic one. This effect results in a remarkable shift of the magneto-structural phase transition temperature from 313 K in the bulk MnAs to above 400 K in the tensely strained MnAs nanocrystals. This finding is corroborated by the state of the art transmission electron microscopy, sensitive magnetometry, and the first-principles calculations. The effect relies on defining a nanotube geometry of molecular beam epitaxy grown core-multishell wurtzite (Ga,In)As/(Ga,Al)As/(Ga,Mn)As/GaAs nanowires, where the MnAs nanocrystals are formed during the thermal-treatment-induced phase separation of wurtzite (Ga,Mn)As into the GaAs-MnAs granular system. Such a unique combination of two types of hexagonal lattices provides a possibility of attaining quasi-hydrostatic tensile strain in MnAs (impossible otherwise), leading to the substantial ferromagnetic phase transition temperature increase in this compound.

18.
Nanoscale ; 11(5): 2275-2281, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30657512

RESUMO

While synthesis methods for pure ZnO nanostructures are well established, an efficient technique for the growth of ZnO-based nanowires or microrods that incorporate any type of quantum structure is yet to be established. Here, we report on the fabrication and optical properties of axial Zn1-xMgxO/ZnO/Zn1-xMgxO quantum wells that were deposited by molecular beam epitaxy on ZnO microrods obtained using a hydrothermal method. Using the emission energy results found in cathodoluminescence measurements and the results of a numerical modeling process, we found the quantum well width to be 4 nm, as intended, at the growth stage. The emission of quantum well-confined excitons persists up to room temperature. We used the fabricated structures to determine the carrier diffusion length (>280 nm) in ZnO using spatially resolved cathodoluminescence. The micro-photoluminescence results suggest an increase in the electron-phonon coupling strength with increasing microrod size.

19.
Nanoscale ; 10(44): 20772-20778, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30402641

RESUMO

SnTe topological crystalline insulator nanowires have been grown by molecular beam epitaxy on graphene/SiC substrates. The nanowires have a cubic rock-salt structure, they grow along the [001] crystallographic direction and have four sidewalls consisting of {100} crystal planes known to host metallic surface states with a Dirac dispersion. Thorough high resolution transmission electron microscopy investigations show that the nanowires grow on graphene in the van der Waals epitaxy mode induced when the catalyzing Au nanoparticles mix with Sn delivered from a SnTe flux, providing a liquid Au-Sn alloy. The nanowires are totally free from structural defects, but their {001} sidewalls are prone to oxidation, which points out the necessity of depositing a protective capping layer in view of exploiting the magneto-electric transport phenomena involving charge carriers occupying topologically protected states.

20.
Nanotechnology ; 29(20): 205205, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29488898

RESUMO

A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA