Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 322(2): H234-H245, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34919456

RESUMO

Mouse models are used to model human diseases and perform pharmacological efficacy testing to advance therapies to humans; most of these studies are conducted in room temperature conditions. At room temperature (22°C), mice are cold-stressed and must use brown adipose tissue (BAT) to maintain body temperature. This cold stress increases catecholamine tone to maintain adipocyte lipid release via lipolysis, which will fuel adaptive thermogenesis. Maintaining rodents at thermoneutral temperatures (28°C) ameliorates the need for adaptive thermogenesis, thus reducing catecholamine tone and BAT activity. Cardiovascular tone is also determined by catecholamine levels in rodents, as ß-adrenergic stimuli are primary drivers of not only lipolytic but also ionotropic and chronotropic responses. As mice have increased catecholamine tone at room temperature, we investigated how thermoneutral housing conditions would impact cardiometabolic function. Here, we show a rapid and reversible effect of thermoneutrality on both heart rate and blood pressure in chow-fed animals, which was blunted in animals fed a high-fat diet. Animals subjected to transverse aortic constriction displayed compensated hypertrophy at room temperature, whereas animals displayed less hypertrophy and a trend toward worse systolic function at thermoneutrality. Despite these dramatic changes in blood pressure and heart rate at thermoneutral housing conditions, enalapril effectively improved cardiac hypertrophy and gene expression alterations. There were surprisingly few differences in cardiac parameters in high-fat-fed animals at thermoneutrality. Overall, these data suggest that thermoneutral housing may alter some aspects of cardiac remodeling in preclinical mouse models of heart failure.NEW & NOTEWORTHY Thermoneutral housing conditions cause rapid and reversible changes in mouse heart rate and blood pressure. Despite dramatic reductions in heart rate and blood pressure, thermoneutrality reduced the compensatory hypertrophic response in a pressure overload heart failure model compared with room temperature housing, and ACE inhibitors were still efficacious to prevent pressure overload-induced cardiac remodeling. The effects of thermoneutrality on heart rate and blood pressure are abrogated in the context of diet-induced obesity.


Assuntos
Regulação da Temperatura Corporal , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Abrigo para Animais/normas , Animais , Doenças Cardiovasculares/metabolismo , Frequência Cardíaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Temperatura
2.
Elife ; 92020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33200983

RESUMO

The lymphatic vasculature is involved in the pathogenesis of acute cardiac injuries, but little is known about its role in chronic cardiac dysfunction. Here, we demonstrate that angiotensin II infusion induced cardiac inflammation and fibrosis at 1 week and caused cardiac dysfunction and impaired lymphatic transport at 6 weeks in mice, while co-administration of VEGFCc156s improved these parameters. To identify novel mechanisms underlying this protection, RNA sequencing analysis in distinct cell populations revealed that VEGFCc156s specifically modulated angiotensin II-induced inflammatory responses in cardiac and peripheral lymphatic endothelial cells. Furthermore, telemetry studies showed that while angiotensin II increased blood pressure acutely in all animals, VEGFCc156s-treated animals displayed a delayed systemic reduction in blood pressure independent of alterations in angiotensin II-mediated aortic stiffness. Overall, these results demonstrate that VEGFCc156s had a multifaceted therapeutic effect to prevent angiotensin II-induced cardiac dysfunction by improving cardiac lymphatic function, alleviating fibrosis and inflammation, and ameliorating hypertension.


Assuntos
Células Endoteliais/metabolismo , Cardiopatias/metabolismo , Miocárdio/metabolismo , Fator C de Crescimento do Endotélio Vascular/farmacologia , Angiotensina II/toxicidade , Animais , Biomarcadores , Técnicas de Introdução de Genes , Estudo de Associação Genômica Ampla , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Análise de Sequência de RNA , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/administração & dosagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-26844408

RESUMO

INTRODUCTION: The cardiovascular liability of candidate compounds can be evaluated by a number of methods including implanted telemetry, jacketed telemetry and surface lead electrocardiogram (ECG). The utility of the new PhysioTel™ Digital M11 cardiovascular telemetry implant was evaluated in monkeys and dogs. METHODS: Eight monkeys and dogs (4 males and 4 females per species) were implanted with the M11 device utilizing a femoral blood pressure catheter and periosteal ECG leads. The signal quality of the ECGs was determined as a percentage of software-matched waveforms and as a percentage of signal loss during the recording periods. To investigate sensitivity for detecting changes in QT/QTc and HR/BP, moxifloxacin and doxazosin were administered to monkeys and dogs implanted with the M11 device. Additionally, histopathological evaluation of the implant site was completed. RESULTS: For both monkey and dog, the percentage of recognizable waveforms was high (65% and 85%, respectively), while the average amount of signal loss was low (1% and 3%, respectively), indicating that the M11 implants delivered data of sufficient quality. In monkeys, moxifloxacin (90mg/kg) induced QT and QTc prolongation up to 22 and 12ms, respectively, while at 30mg/kg in dogs, the maximal increases in QT and QTc were 13 and 16ms, respectively. Doxazosin (1.5 and 1.0mg/kg) produced HR increases up to 35 and 29bpm with decreases in blood pressure up to -14 and -26mmHg in monkeys and dogs, respectively. The histopathological impact of the implant, catheter and biopotential leads was limited to expected minor local inflammatory changes as assessed at necropsy and with microscopic examination. DISCUSSION: Based upon the results of this study, the PhysioTel™ Digital M11 is a suitable technology for assessing cardiovascular parameters in monkeys and dogs, and because of the size and limited invasiveness of the implant, is well positioned for use on toxicology studies.


Assuntos
Sistema Cardiovascular/fisiopatologia , Síndrome do QT Longo/fisiopatologia , Telemetria/métodos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Sistema Cardiovascular/efeitos dos fármacos , Cães , Doxazossina/farmacologia , Eletrocardiografia/métodos , Feminino , Fluoroquinolonas/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Inflamação/tratamento farmacológico , Inflamação/fisiopatologia , Síndrome do QT Longo/tratamento farmacológico , Macaca fascicularis , Masculino , Moxifloxacina
4.
J Am Assoc Lab Anim Sci ; 46(5): 42-5, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17877327

RESUMO

The 18F isotope of fluoro-2-deoxy-D-glucose (FDG) is a radiotracer commonly used in positron emission tomography (PET) for determining regional metabolic activity in the brain. However, in rats and many other species with nictitating membranes, harderian glands located just behind the eyes aggressively incorporate 18F-FDG to the extent that PET images of the brain become obscured. This radioactive spillover, or 'partial volume error,' combined with the limited spatial resolution of microPET scanners (1.5 to 2 mm) may markedly reduce the ability to quantify neuronal activity in frontal brain structures. Theoretically, surgical removal of the harderian glands before 18F-FDG injection would eliminate the confounding uptake of the radioactive tracer and thereby permit visualization of glucose metabolism in the frontal brain. We conducted a pilot study of unilateral harderian gland adenectomy, leaving the contralateral gland intact for comparison. At 1 wk after surgery, each rat was injected intravenously with 18F-FDG, and 40 min later underwent brain microPET for 20 min. Review of the resulting images showed that the frontal cortex on the surgical side was defined more clearly, with only background 18F-FDG accumulation in the surgical bed. Activity in the frontal cortex on the intact side was obscured by intense accumulation of 18F-FDG in the harderian gland. By reducing partial volume error, this simple surgical procedure may become a valuable tool for visualization of the frontal cortex of rat brain by 18F-FDG microPET imaging.


Assuntos
Encéfalo/metabolismo , Fluordesoxiglucose F18 , Glândula de Harder/cirurgia , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão/veterinária , Animais , Encéfalo/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/metabolismo , Glândula de Harder/diagnóstico por imagem , Glândula de Harder/metabolismo , Ratos , Ratos Sprague-Dawley , Tomografia Computadorizada de Emissão/métodos
5.
Comp Med ; 57(6): 563-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18246868

RESUMO

We developed a mouse model of Staphylococcus aureus infective endocarditis to evaluate the efficacy of experimental antibacterial compounds for this disease. Experimental infective endocarditis was produced in CD1 mice by intravenous challenge with approximately 6 log10 colony-forming units (CFU) of methicillin-sensitive (MSSA) SA-3529 or -resistant (MRSA) SA-2015 S. aureus 1 d after aortic valve trauma. Valve trauma was produced by introduction of an indwelling 32-gauge polyurethane catheter into the aortic valve via the left carotid artery. Histologic examination of MSSA- and MRSA-infected and catheterized aortic valve sections revealed neutrophilic inflammation and vegetative bacterial colonies encapsulated within fibrin along the aortic valves 1 d after infection. The MSSA or MRSA endocarditis was determined to be catheter-dependent based on catheterized mice exhibiting heart bacterial counts 4 orders of magnitude greater than those seen for noncatheterized mice. The model was validated by using a 3-d regimen of vancomycin at exposures comparable to human dosing (500 microg x h/ml). Vancomycin treatment produced statistically significant reductions of 3.4 and 3.1 log10 CFU/heart for MSSA and MRSA, respectively, relative to controls. This mouse model of endocarditis shows promise in evaluating the predictive efficacy of antibiotics for S. aureus infective endocarditis.


Assuntos
Endocardite Bacteriana/etiologia , Infecções Estafilocócicas/etiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Valva Aórtica/microbiologia , Valva Aórtica/patologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/metabolismo , Endocardite Bacteriana/microbiologia , Feminino , Resistência a Meticilina , Camundongos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Vancomicina/administração & dosagem , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA