RESUMO
Magnetic phenomena are ubiquitous in nature and indispensable for modern science and technology, but it is notoriously difficult to change the magnetic order of a material in a rapid way. However, if a thin nickel film is subjected to ultrashort laser pulses, it loses its magnetic order almost completely within femtosecond timescales1. This phenomenon is widespread2-7 and offers opportunities for rapid information processing8-11 or ultrafast spintronics at frequencies approaching those of light8,9,12. Consequently, the physics of ultrafast demagnetization is central to modern materials research1-7,13-28, but a crucial question has remained elusive: if a material loses its magnetization within mere femtoseconds, where is the missing angular momentum in such a short time? Here we use ultrafast electron diffraction to reveal in nickel an almost instantaneous, long-lasting, non-equilibrium population of anisotropic high-frequency phonons that appear within 150-750 fs. The anisotropy plane is perpendicular to the direction of the initial magnetization and the atomic oscillation amplitude is 2 pm. We explain these observations by means of circularly polarized phonons that quickly absorb the angular momentum of the spin system before macroscopic sample rotation. The time that is needed for demagnetization is related to the time it takes to accelerate the atoms. These results provide an atomistic picture of the Einstein-de Haas effect and signify the general importance of polarized phonons for non-equilibrium dynamics and phase transitions.
RESUMO
We report on an effect of reduced dimensionality on the magnetotransport in cobalt layers sandwiched by platinum. In a current in-plane geometry it is found that the resistivity depends on the magnetization orientation within the plane perpendicular to the current direction. The resistivity shows a symmetry adapted cos(2) dependence on the angle to the surface normal, with the maximum along the surface normal. The Co thickness dependence of the effect in Pt/Co/Pt sandwiches clearly points out that the mechanism behind this effect originates at the Co/Pt interfaces and is disparate to the texture induced geometrical size effect.