Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 780, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140223

RESUMO

Single-cell genomic technologies provide an unprecedented opportunity to define molecular cell types in a data-driven fashion, but present unique data integration challenges. Many analyses require "mosaic integration", including both features shared across datasets and features exclusive to a single experiment. Previous computational integration approaches require that the input matrices share the same number of either genes or cells, and thus can use only shared features. To address this limitation, we derive a nonnegative matrix factorization algorithm for integrating single-cell datasets containing both shared and unshared features. The key advance is incorporating an additional metagene matrix that allows unshared features to inform the factorization. We demonstrate that incorporating unshared features significantly improves integration of single-cell RNA-seq, spatial transcriptomic, SNARE-seq, and cross-species datasets. We have incorporated the UINMF algorithm into the open-source LIGER R package ( https://github.com/welch-lab/liger ).


Assuntos
Algoritmos , Biologia Computacional , Análise de Célula Única , Bases de Dados Factuais , Genômica , RNA-Seq , Software , Transcriptoma , Sequenciamento do Exoma
2.
Nat Biotechnol ; 39(8): 1000-1007, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33875866

RESUMO

Integrating large single-cell gene expression, chromatin accessibility and DNA methylation datasets requires general and scalable computational approaches. Here we describe online integrative non-negative matrix factorization (iNMF), an algorithm for integrating large, diverse and continually arriving single-cell datasets. Our approach scales to arbitrarily large numbers of cells using fixed memory, iteratively incorporates new datasets as they are generated and allows many users to simultaneously analyze a single copy of a large dataset by streaming it over the internet. Iterative data addition can also be used to map new data to a reference dataset. Comparisons with previous methods indicate that the improvements in efficiency do not sacrifice dataset alignment and cluster preservation performance. We demonstrate the effectiveness of online iNMF by integrating more than 1 million cells on a standard laptop, integrating large single-cell RNA sequencing and spatial transcriptomic datasets, and iteratively constructing a single-cell multi-omic atlas of the mouse motor cortex.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado de Máquina , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Camundongos , Análise Multivariada
3.
Artigo em Inglês | MEDLINE | ID: mdl-35187422

RESUMO

We are bioinformatics trainees at the University of Michigan who started a local chapter of Girls Who Code to provide a fun and supportive environment for high school women to learn the power of coding. Our goal was to cover basic coding topics and data science concepts through live coding and hands-on practice. However, we could not find a resource that exactly met our needs. Therefore, over the past three years, we have developed a curriculum and instructional format using Jupyter notebooks to effectively teach introductory Python for data science. This method, inspired by The Carpentries organization, uses bite-sized lessons followed by independent practice time to reinforce coding concepts, and culminates in a data science capstone project using real-world data. We believe our open curriculum is a valuable resource to the wider education community and hope that educators will use and improve our lessons, practice problems, and teaching best practices. Anyone can contribute to our Open Educational Resources on GitHub.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA