Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(33): 21894-21910, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110153

RESUMO

Inorganic colloidal cesium lead halide perovskite nanocrystals (NCs) encapsulated by surface capping ligands exhibit tremendous potential in optoelectronic applications, with their surface structure playing a pivotal role in enhancing their photophysical properties. Soy lecithin, a tightly binding zwitterionic surface-capping ligand, has recently facilitated the high-yield synthesis of stable ultraconcentrated and ultradilute colloids of CsPbX3 NCs, unlocking a myriad of potential device applications. However, the atomic-level understanding of the ligand-terminated surface structure remains uncertain. Herein, we use a versatile solid-state nuclear magnetic resonance (NMR) spectroscopic approach, in combination with dynamic nuclear polarization (DNP) and atomistic molecular dynamics (MD) simulations, to explore the effect of lecithin on the core-to-surface structures of CsPbX3 (X = Cl or Br) perovskites, sized from micron to nanoscale. Surface-selective (cross-polarization, CP) solid-state and DNP NMR (133Cs and 207Pb) methods were used to differentiate the unique surface and core chemical environments, while the head-groups {trimethylammonium [-N(CH3)3+] and phosphate (-PO4-)} of lecithin were assigned via 1H, 13C, and 31P NMR spectroscopy. A direct approach to determining the surface structure by capitalizing on the unique heteronuclear dipolar couplings between the lecithin ligand (1H and 31P) and the surface of the CsPbCl3 NCs (133Cs and 207Pb) is demonstrated. The 1H-133Cs heteronuclear correlation (HETCOR) DNP NMR indicates an abundance of Cs on the NC surface and an intimate proximity of the -N(CH3)3+ groups to the surface and subsurface 133Cs atoms, supported by 1H{133Cs} rotational-echo double-resonance (REDOR) NMR spectroscopy. Moreover, the 1H-31P{207Pb} CP REDOR dephasing curve provides average internuclear distance information that allows assessment of -PO4- groups binding to the subsurface Pb atoms. Atomistic MD simulations of ligand-capped CsPbCl3 surfaces aid in the interpretation of this information and suggest that ligand -N(CH3)3+ and -PO4- head-groups substitute Cs+ and Cl- ions, respectively, at the CsCl-terminated surface of the NCs. These detailed atomistic insights into surface structures can further guide the engineering of various relevant surface-capping zwitterionic ligands for diverse metal halide perovskite NCs.

2.
Chem Mater ; 36(6): 2767-2775, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38558917

RESUMO

Colloidal nuclear magnetic resonance (cNMR) spectroscopy on inorganic cesium lead halide nanocrystals (CsPbX3 NCs) is found to serve for noninvasive characterization and quantification of disorder within these structurally soft and labile particles. In particular, we show that 133Cs cNMR is highly responsive to size variations from 3 to 11 nm or to altering the capping ligands on the surfaces of CsPbX3 NCs. Distinct 133Cs signals are attributed to the surface and core NC regions. Increased heterogeneous broadening of 133Cs signals, observed for smaller NCs as well as for long-chain zwitterionic capping ligands (phosphocholines, phosphoethanol(propanol)amine, and sulfobetaines), can be attributed to more significant surface disorder and multifaceted surfaces (truncated cubes). On the contrary, capping with dimethyldidodecylammonium bromide (DDAB) successfully reduces signal broadening owing to better surface passivation and sharper (001)-bound cuboid shape. DFT calculations on various sizes of NCs corroborate the notion that the surface disorder propagates over several octahedral layers. 133Cs NMR is a sensitive probe for studying halide gradients in mixed Br/Cl NCs, indicating bromide-rich surfaces and chloride-rich cores. On the contrary, mixed Br/I NCs exhibit homogeneous halide distributions.

3.
Sci Adv ; 10(8): eadj2630, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381813

RESUMO

In semiconductors, exciton or charge carrier diffusivity is typically described as an inherent material property. Here, we show that the transport of excitons among CsPbBr3 perovskite nanocrystals (NCs) depends markedly on how recently those NCs were occupied by a previous exciton. Using transient photoluminescence microscopy, we observe a striking dependence of the apparent exciton diffusivity on excitation laser power that does not arise from nonlinear exciton-exciton interactions or thermal heating. We interpret our observations with a model in which excitons cause NCs to transition to a long-lived metastable configuration that markedly increases exciton transport. The exciton diffusivity observed here (>0.15 square centimeters per second) is considerably higher than that observed in other NC systems, revealing unusually strong excitonic coupling between NCs. The finding of a persistent enhancement in excitonic coupling may help explain other photophysical behaviors observed in CsPbBr3 NCs, such as superfluorescence, and inform the design of optoelectronic devices.

4.
ACS Nano ; 17(7): 6638-6648, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939330

RESUMO

The relaxation of the above-gap ("hot") carriers in lead halide perovskites (LHPs) is important for applications in photovoltaics and offers insights into carrier-carrier and carrier-phonon interactions. However, the role of quantum confinement in the hot carrier dynamics of nanosystems is still disputed. Here, we devise a single approach, ultrafast pump-push-probe spectroscopy, to study carrier cooling in six different size-controlled LHP nanomaterials. In cuboidal nanocrystals, we observe only a weak size effect on the cooling dynamics. In contrast, two-dimensional systems show suppression of the hot phonon bottleneck effect common in bulk perovskites. The proposed kinetic model describes the intrinsic and density-dependent cooling times accurately in all studied perovskite systems using only carrier-carrier, carrier-phonon, and excitonic coupling constants. This highlights the impact of exciton formation on carrier cooling and promotes dimensional confinement as a tool for engineering carrier-phonon and carrier-carrier interactions in LHP optoelectronic materials.

5.
Molecules ; 27(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014329

RESUMO

Due to the growing demand for patient-friendly subcutaneous dosage forms, the ability to increasing protein solubility and stability in formulations to deliver on the required high protein concentrations is crucial. A common approach to ensure protein solubility and stability in high concentration protein formulations is the addition of excipients such as sugars, amino acids, surfactants, approved by the Food and Drug Administration. In a best-case scenario, these excipients fulfil multiple demands simultaneously, such as increasing long-term stability of the formulation, reducing protein adsorption on surfaces/interfaces, and stabilizing the protein against thermal or mechanical stress. 2-Hydroxylpropyl-ß-cyclodextrin (derivative of ß-cyclodextrin) holds this potential, but has not yet been sufficiently investigated for use in protein formulations. Within this work, we have systematically investigated the relevant molecular interactions to identify the potential of Kleptose®HPB (2-hydroxylpropyl-ß-cyclodextrin from Roquette Freres, Lestrem, France) as "multirole" excipient within liquid protein formulations. Based on our results three factors determine the influence of Kleptose®HPB on protein formulation stability: (1) concentration of Kleptose®HPB, (2) protein type and protein concentration, and (3) quality of the protein formulation. Our results not only contribute to the understanding of the relevant interactions but also enable the target-oriented use of Kleptose®HPB within formulation design.


Assuntos
Excipientes , beta-Ciclodextrinas , Estabilidade de Medicamentos , Excipientes/química , Humanos , Estabilidade Proteica , Proteínas/química , Solubilidade , beta-Ciclodextrinas/química
6.
Nano Lett ; 22(11): 4340-4346, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605286

RESUMO

The soft lattice of lead-halide perovskite nanocrystals (NCs) allows tuning their optoelectronic characteristics via anion exchange by introducing halide salts to a solution of perovskite NCs. Similarly, cross-anion exchange can occur upon mixing NCs of different perovskite halides. This process, though, is detrimental for applications requiring perovskite NCs with different halides in close proximity. We study the effects of various stabilizing surface ligands on the kinetics of the cross-anion exchange reaction, comparing zwitterionic and ionic ligands. The kinetic analysis, inspired by the "cage effect" for solution reactions, showcases a mechanism where the surface capping ligands act as anion carriers that diffuse to the NC surface, forming an encounter pair enclosed by the surrounding ligands that initiates the anion exchange process. The zwitterionic ligands considerably slow down the cross-anion exchange process, and while they do not fully inhibit it, they confer improved stability alongside enhanced solubility relevant for various applications.

7.
Nat Commun ; 13(1): 2587, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546149

RESUMO

Semiconductor quantum dots have long been considered artificial atoms, but despite the overarching analogies in the strong energy-level quantization and the single-photon emission capability, their emission spectrum is far broader than typical atomic emission lines. Here, by using ab-initio molecular dynamics for simulating exciton-surface-phonon interactions in structurally dynamic CsPbBr3 quantum dots, followed by single quantum dot optical spectroscopy, we demonstrate that emission line-broadening in these quantum dots is primarily governed by the coupling of excitons to low-energy surface phonons. Mild adjustments of the surface chemical composition allow for attaining much smaller emission linewidths of 35-65 meV (vs. initial values of 70-120 meV), which are on par with the best values known for structurally rigid, colloidal II-VI quantum dots (20-60 meV). Ultra-narrow emission at room-temperature is desired for conventional light-emitting devices and paramount for emerging quantum light sources.

8.
J Phys Chem Lett ; 13(15): 3382-3391, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404613

RESUMO

A comprehensive microscopic description of thermally induced distortions in lead halide perovskites is crucial for their realistic applications, yet still unclear. Here, we quantify the effects of thermal activation in CsPbBr3 nanocrystals across length scales with atomic-level precision, and we provide a framework for the description of phase transitions therein, beyond the simplistic picture of unit-cell symmetry increase upon heating. The temperature increase significantly enhances the short-range structural distortions of the lead halide framework as a consequence of the phonon anharmonicity, which causes the excess free energy surface to change as a function of temperature. As a result, phase transitions can be rationalized via the soft-mode model, which also describes displacive thermal phase transitions in oxide perovskites. Our findings allow to reconcile temperature-dependent modifications of physical properties, such as changes in the optical band gap, that are incompatible with the perovskite time- and space-average structures.

10.
Nano Lett ; 22(2): 808-814, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34990139

RESUMO

Nonresonant optical driving of confined semiconductors can open up exciting opportunities for experimentally realizing strongly interacting photon-dressed (Floquet) states through the optical Stark effect (OSE) for coherent modulation of the exciton state. Here we report the first room-temperature observation of the Floquet biexciton-mediated anomalous coherent excitonic OSE in CsPbBr3 quantum dots (QDs). Remarkably, the strong exciton-biexciton interaction leads to a coherent red shift and splitting of the exciton resonance as a function of the drive photon frequency, similar to Autler-Townes splitting in atomic and molecular systems. The large biexciton binding energy of ∼71 meV and exciton-biexciton transition dipole moment of ∼25 D facilitate the hallmark observations, even at large detuning energies of >300 meV. This is accompanied by an unusual crossover from linear to nonlinear fluence dependence of the OSE as a function of the drive photon frequency. Our findings reveal crucial information on the unexplored many-body coherent interacting regime, making perovskite QDs suitable for room temperature quantum devices.

11.
J Phys Chem Lett ; 12(33): 8088-8095, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34406780

RESUMO

Fundamental photophysical behavior in CsPbBr3 nanocrystals (NCs), especially at low temperatures, is under active investigation. While many studies have reported temperature-dependent photoluminescence, comparatively few have focused on understanding the temperature-dependent absorption spectrum. Here, we report the temperature-dependent (35-300 K) absorption and photoluminescence spectra of zwitterionic ligand-capped CsPbBr3 NCs with four different edge lengths (d = 4.9, 7.2, 8.1, and 13.2 nm). The two lowest-energy excitonic transitions are quantitatively modeled over the full temperature range within the effective mass approximation considering the quasi-cubic NC shape and nonparabolicity of the electronic bands. Significantly, we find that the effective dielectric constant determined from the best fit model parameters is independent of temperature. Moreover, we observe a temperature-dependent Stokes shift that saturates at a finite value of Δ ≈ 10 meV at low temperatures for d = 7.2 nm NCs, which is absent in bulk CsPbBr3 films. Overall, these observations highlight differences between the temperature-dependent dielectric behavior of NC and bulk perovskites and point to the need for a more unified theoretical understanding of absorption and emission in halide perovskites.

12.
J Am Chem Soc ; 143(24): 9048-9059, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34075753

RESUMO

The development of next-generation perovskite-based optoelectronic devices relies critically on the understanding of the interaction between charge carriers and the polar lattice in out-of-equilibrium conditions. While it has become increasingly evident for CsPbBr3 perovskites that the Pb-Br framework flexibility plays a key role in their light-activated functionality, the corresponding local structural rearrangement has not yet been unambiguously identified. In this work, we demonstrate that the photoinduced lattice changes in the system are due to a specific polaronic distortion, associated with the activation of a longitudinal optical phonon mode at 18 meV by electron-phonon coupling, and we quantify the associated structural changes with atomic-level precision. Key to this achievement is the combination of time-resolved and temperature-dependent studies at Br K and Pb L3 X-ray absorption edges with refined ab initio simulations, which fully account for the screened core-hole final state effects on the X-ray absorption spectra. From the temporal kinetics, we show that carrier recombination reversibly unlocks the structural deformation at both Br and Pb sites. The comparison with the temperature-dependent XAS results rules out thermal effects as the primary source of distortion of the Pb-Br bonding motif during photoexcitation. Our work provides a comprehensive description of the CsPbBr3 perovskites' photophysics, offering novel insights on the light-induced response of the system and its exceptional optoelectronic properties.

13.
ACS Cent Sci ; 7(1): 135-144, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33532576

RESUMO

Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX3 NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr3 NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures-accelerated collective emission arising from the coherent coupling of the emitting dipoles.

14.
ACS Nano ; 14(11): 14686-14697, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32897688

RESUMO

Fast neutrons offer high penetration capabilities for both light and dense materials due to their comparatively low interaction cross sections, making them ideal for the imaging of large-scale objects such as large fossils or as-built plane turbines, for which X-rays or thermal neutrons do not provide sufficient penetration. However, inefficient fast neutron detection limits widespread application of this technique. Traditional phosphors such as ZnS:Cu embedded in plastics are utilized as scintillators in recoil proton detectors for fast neutron imaging. However, these scintillation plates exhibit significant light scattering due to the plastic-phosphor interface along with long-lived afterglow (on the order of minutes), and therefore alternative solutions are needed to increase the availability of this technique. Here, we utilize colloidal nanocrystals (NCs) in hydrogen-dense solvents for fast neutron imaging through the detection of recoil protons generated by neutron scattering, demonstrating the efficacy of nanomaterials as scintillators in this detection scheme. The light yield, spatial resolution, and neutron-vs-gamma sensitivity of several chalcogenide (CdSe and CuInS2)-based and perovskite halide-based NCs are determined, with only a short-lived afterglow (below the order of seconds) observed for all of these NCs. FAPbBr3 NCs exhibit the brightest total light output at 19.3% of the commercial ZnS:Cu(PP) standard, while CsPbBrCl2:Mn NCs offer the best spatial resolution at ∼2.6 mm. Colloidal NCs showed significantly lower gamma sensitivity than ZnS:Cu; for example, 79% of the FAPbBr3 light yield results from neutron-induced radioluminescence and hence the neutron-specific light yield of FAPbBr3 is 30.4% of that of ZnS:Cu(PP). Concentration and thickness-dependent measurements highlight the importance of increasing concentrations and reducing self-absorption, yielding design principles to optimize and foster an era of NC-based scintillators for fast neutron imaging.

15.
Phys Chem Chem Phys ; 22(31): 17605-17611, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32808944

RESUMO

The relaxation of high-energy "hot" carriers in semiconductors is known to involve the redistribution of energy between hot and cold carriers, as well as the transfer of energy from hot carriers to phonons. Over the past few years, these two processes have been identified in lead-halide perovskites (LHPs) using ultrafast pump-probe experiments, but their interplay is not fully understood. Here we present a practical and intuitive kinetic model that accounts for the effects of both hot and cold carriers on carrier relaxation in LHPs. We apply this model to describe the dynamics of hot carriers in bulk and nanocrystalline CsPbBr3 as observed by multi-pulse "pump-push-probe" spectroscopy. The model captures the slowing of the relaxation dynamics in the materials as the number of hot carriers increases, which has previously been explained by a "hot-phonon bottleneck" mechanism. The model also correctly predicts an acceleration of the relaxation kinetics as the number of cold carriers in the samples is increased. Using a series of natural approximations, we reduce our model to a simple form containing terms for the carrier-carrier and carrier-phonon interactions. The model can be instrumental for evaluating the details of carrier relaxation and carrier-phonon couplings in LHPs and other soft optoelectronic materials.

16.
ACS Cent Sci ; 6(7): 1138-1149, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32724848

RESUMO

Lead-halide perovskites increasingly mesmerize researchers because they exhibit a high degree of structural defects and dynamics yet nonetheless offer an outstanding (opto)electronic performance on par with the best examples of structurally stable and defect-free semiconductors. This highly unusual feature necessitates the adoption of an experimental and theoretical mindset and the reexamination of techniques that may be uniquely suited to understand these materials. Surprisingly, the suite of methods for the structural characterization of these materials does not commonly include nuclear magnetic resonance (NMR) spectroscopy. The present study showcases both the utility and versatility of halide NMR and NQR (nuclear quadrupole resonance) for probing the structure and structural dynamics of CsPbX3 (X = Cl, Br, I), in both bulk and nanocrystalline forms. The strong quadrupole couplings, which originate from the interaction between the large quadrupole moments of, e.g., the 35Cl, 79Br, and 127I nuclei, and the local electric-field gradients, are highly sensitive to subtle structural variations, both static and dynamic. The quadrupole interaction can resolve structural changes with accuracies commensurate with synchrotron X-ray diffraction and scattering. It is shown that space-averaged site-disorder is greatly enhanced in the nanocrystals compared to the bulk, while the dynamics of nuclear spin relaxation indicates enhanced structural dynamics in the nanocrystals. The findings from NMR and NQR were corroborated by ab initio molecular dynamics, which point to the role of the surface in causing the radial strain distribution and disorder. These findings showcase a great synergy between solid-state NMR or NQR and molecular dynamics simulations in shedding light on the structure of soft lead-halide semiconductors.

17.
Sci Rep ; 10(1): 8229, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427897

RESUMO

Understanding the structure and dynamics of newcomer optoelectronic materials - lead halide perovskites APbX3 [A = Cs, methylammonium (CH3NH3+, MA), formamidinium (CH(NH2)2+, FA); X = Cl, Br, I] - has been a major research thrust. In this work, new insights could be gained by using 207Pb solid-state nuclear magnetic resonance (NMR) spectroscopy at variable temperatures between 100 and 300 K. The existence of scalar couplings 1JPb-Cl of ca. 400 Hz and 1JPb-Br of ca. 2.3 kHz could be confirmed for MAPbX3 and CsPbX3. Diverse and fast structure dynamics, including rotations of A-cations, harmonic and anharmonic vibrations of the lead-halide framework and ionic mobility, affect the resolution of the coupling pattern. 207Pb NMR can therefore be used to detect the structural disorder and phase transitions. Furthermore, by comparing bulk and nanocrystalline CsPbBr3 a greater structural disorder of the PbBr6-octahedra had been confirmed in a nanoscale counterpart, not readily captured by diffraction-based techniques.

18.
Nano Lett ; 20(4): 2271-2278, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142303

RESUMO

Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck". However, the role of carrier-carrier interactions, and the material properties that control cooling in LHPs, is still disputed. To address these factors, we utilize ultrafast "pump-push-probe" spectroscopy on LHP nanocrystal (NC) films. We find that the addition of cold carriers to LHP NCs increases the cooling rate, competing with the phonon bottleneck. By comparing different NCs and bulk samples, we deduce that the cooling behavior is intrinsic to the LHP composition and independent of the NC size or surface. This can be contrasted with other colloidal nanomaterials, where confinement and trapping considerably influence the cooling dynamics.

19.
Nanoscale ; 12(12): 6795-6802, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32181469

RESUMO

Single cesium lead bromide (CsPbBr3) nanocrystals show strong photoluminescence intermittency, with on- and off- dwelling times following power-law distributions. We investigate the correlations for successive on-times and successive off-times, and find a memory effect in the photoluminescence intermittency of such inorganic perovskite nanocrystals. This memory effect is not sensitive to the nature of the surface capping ligand and the embedding polymer. These observations suggest that photoluminescence intermittency and its memory are mainly controlled by intrinsic traps in the nanocrystals. Our findings will help optimizing light-emitting devices based on these perovskite nanocrystals.

20.
Sci Rep ; 9(1): 17964, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784597

RESUMO

The use of lead halide perovskites in optoelectronic and photonic devices is mainly limited by insufficient long-term stability of these materials. This issue is receiving growing attention, mainly owing to the operational stability improvement of lead halide perosvkites solar cells. On the contrary, fewer efforts are devoted to the stability improvement of light amplification and lasing. In this report we demonstrate that a simple hydrophobic functionalization of the substrates with hexamethyldisilazane (HMDS) allows to strongly improve the Amplified Spontaneous Emission (ASE) properties of drop cast CsPbBr3 nanocrystal (NC) thin films. In particular we observe an ASE threshold decrease down to 45% of the value without treatment, an optical gain increase of up to 1.5 times and an ASE operational stability increase of up to 14 times. These results are ascribed to a closer NC packing in the films on HMDS treated substrate, allowing an improved energy transfer towards the larger NCs within the NC ensemble, and to the reduction of the film interaction with moisture. Our results propose hydrophobic functionalization of the substrates as an easy approach to lower the ASE and lasing thresholds, while simultaneously increasing the active material stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA