RESUMO
Platelet activation results in the generation of thromboxane A2 (TxA2), which promotes thrombus formation by further amplifying platelet function, as well as causing vasoconstriction. Due to its role in thrombus formation and cardiovascular disease, its production is the target of antiplatelet drugs such as aspirin. However, the study of TxA2-stimulated cellular function has been limited by its instability (t 1/2 = 32 s, pH = 7.4). Although more stable analogues such as U46619 and difluorinated 10,10-F2-TxA2 have been prepared, we targeted a closer mimic to TxA2 itself, monofluorinated 10-F-TxA2, since the number of fluorine atoms can affect function. Key steps in the synthesis of F-TxA2 included α-fluorination of a lactone bearing a ß-alkoxy group, and a novel synthesis of the strained acetal. F-TxA2 was found to be 105 more stable than TxA2, and surprisingly was only slightly less stable than F2-TxA2. Preliminary biological studies showed that F-TxA2 has similar potency as TxA2 toward inducing platelet aggregation but was superior to F2-TxA2 in activating integrin αIIbß3.
RESUMO
Herein, we report the synthesis of two enantiomeric DOTAZA esters and a related DOT3AZA ester. These compounds are tunable analogues of the well-known chelator DOTA and can be easily functionalized through click chemistry of the side-chain azide groups. Like DOTA, DOTAZA forms complexes with various di- and trivalent metals, as demonstrated in the synthesis and structural analysis of CuDOTAZA and the preparation of GdDOTAZA.
Assuntos
Química Click , Compostos Heterocíclicos com 1 Anel/síntese química , Compostos Heterocíclicos com 1 Anel/química , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray , EstereoisomerismoRESUMO
The multivalent carbohydrate-carbohydrate interaction between membrane-anchored epitopes derived from the marine sponge Microciona prolifera has been explored by colloidal probe microscopy. An in situ coupling of sulfated and non-sulfated disaccharides to membrane-coated surfaces was employed to mimic native cell-cell contacts.The dynamic strength of the homomeric self-association was measured as a function of calcium ions and loading rate. A deterministic model was used to estimate the basic energy landscape and number of participating bonds in the contact zone.
Assuntos
Dissacarídeos/química , Bicamadas Lipídicas/química , Poríferos/química , Animais , Adesão Celular , Dissacarídeos/isolamento & purificação , Microscopia de Varredura por SondaRESUMO
In this communication we present the synthesis of the inverse crown ether complex [Li(2)O(2)·Li(4){CH(2)(N(Me)CH(2)S(NtBu)(2))(2)}(2)] (1) which is able to accommodate peroxide in a torus of lithium ions.
RESUMO
Di(tert-butyl)sulfur diimide and bis(trimethylsilyl)sulfur diimide were reacted with different metalated amines to form versatile novel multidentate ligand systems with side-arm donation. Their complexation properties in terms of ligand design, denticity and the cation size are discussed. We report herein the synthesis and structure elucidation of [(tBuN)(2)S{LiMe(2)N(C(6)H(4))S(NtBu)(2)}(2)] (1), [(Li{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (2), [(Li(thf){Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (3), [(Li{2-PicS(NSiMe(3))(2)})(2)] (4), [(Li{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (5), [(Na{Me(2)N(CH(2))(2)N(Me)S(NSiMe(3))(2)})(2)] (6) and [(K{Me(2)N(C(6)H(4))S(NSiMe(3))(2)})(2)] (7).