Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Stem Cell ; 30(10): 1331-1350.e11, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802038

RESUMO

Mesial temporal lobe epilepsy (MTLE) is the most common focal epilepsy. One-third of patients have drug-refractory seizures and are left with suboptimal therapeutic options such as brain tissue-destructive surgery. Here, we report the development and characterization of a cell therapy alternative for drug-resistant MTLE, which is derived from a human embryonic stem cell line and comprises cryopreserved, post-mitotic, medial ganglionic eminence (MGE) pallial-type GABAergic interneurons. Single-dose intrahippocampal delivery of the interneurons in a mouse model of chronic MTLE resulted in consistent mesiotemporal seizure suppression, with most animals becoming seizure-free and surviving longer. The grafted interneurons dispersed locally, functionally integrated, persisted long term, and significantly reduced dentate granule cell dispersion, a pathological hallmark of MTLE. These disease-modifying effects were dose-dependent, with a broad therapeutic range. No adverse effects were observed. These findings support an ongoing phase 1/2 clinical trial (NCT05135091) for drug-resistant MTLE.


Assuntos
Epilepsia do Lobo Temporal , Hipocampo , Camundongos , Animais , Humanos , Hipocampo/patologia , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/cirurgia , Convulsões/patologia , Convulsões/cirurgia , Interneurônios/fisiologia , Encéfalo/patologia
2.
Cell Stem Cell ; 28(2): 343-355.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545081

RESUMO

Human pluripotent stem cells show considerable promise for applications in regenerative medicine, including the development of cell replacement paradigms for the treatment of Parkinson's disease. Protocols have been developed to generate authentic midbrain dopamine (mDA) neurons capable of reversing dopamine-related deficits in animal models of Parkinson's disease. However, the generation of mDA neurons at clinical scale suitable for human application remains an important challenge. Here, we present an mDA neuron derivation protocol based on a two-step WNT signaling activation strategy that improves expression of midbrain markers, such as Engrailed-1 (EN1), while minimizing expression of contaminating posterior (hindbrain) and anterior (diencephalic) lineage markers. The resulting neurons exhibit molecular, biochemical, and electrophysiological properties of mDA neurons. Cryopreserved mDA neuron precursors can be successfully transplanted into 6-hydroxydopamine (6OHDA) lesioned rats to induce recovery of amphetamine-induced rotation behavior. The protocol presented here is the basis for clinical-grade mDA neuron production and preclinical safety and efficacy studies.


Assuntos
Neurônios Dopaminérgicos , Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular , Mesencéfalo , Ratos , Via de Sinalização Wnt
3.
Cell Stem Cell ; 28(2): 217-229.e7, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545080

RESUMO

Parkinson's disease is characterized by the loss of dopaminergic neurons in the substantia nigra leading to disabling deficits. Dopamine neuron grafts may provide a significant therapeutic advance over current therapies. We have generated midbrain dopamine neurons from human embryonic stem cells and manufactured large-scale cryopreserved dopamine progenitors for clinical use. After optimizing cell survival and phenotypes in short-term studies, the cell product, MSK-DA01, was subjected to an extensive set of biodistribution, toxicity, and tumorigenicity assessments in mice under GLP conditions. A large-scale efficacy study was also performed in rats with the same lot of cells intended for potential human use and demonstrated survival of the grafted cells and behavioral amelioration in 6-hydroxydopamine lesioned rats. There were no adverse effects attributable to the grafted cells, no obvious distribution outside the brain, and no cell overgrowth or tumor formation, thus paving the way for a future clinical trial.


Assuntos
Dopamina , Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular , Neurônios Dopaminérgicos , Mesencéfalo , Camundongos , Ratos , Distribuição Tecidual
4.
J Dev Biol ; 8(2)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244588

RESUMO

The molecular mechanisms regulating neurogenesis involve the control of gene expression by transcription factors. Gbx1 and Gbx2, two members of the Gbx family of homeodomain-containing transcription factors, are known for their essential roles in central nervous system development. The expression domains of mouse Gbx1 and Gbx2 include regions of the forebrain, anterior hindbrain, and spinal cord. In the spinal cord, Gbx1 and Gbx2 are expressed in PAX2+ interneurons of the dorsal horn and ventral motor neuron progenitors. Based on their shared domains of expression and instances of overlap, we investigated the functional relationship between Gbx family members in the developing spinal cord using Gbx1-/-, Gbx2-/-, and Gbx1-/-/Gbx2-/- embryos. In situ hybridization analyses of embryonic spinal cords show upregulation of Gbx2 expression in Gbx1-/- embryos and upregulation of Gbx1 expression in Gbx2-/- embryos. Additionally, our data demonstrate that Gbx genes regulate development of a subset of PAX2+ dorsal inhibitory interneurons. While we observe no difference in overall proliferative status of the developing ependymal layer, expansion of proliferative cells into the anatomically defined mantle zone occurs in Gbx mutants. Lastly, our data shows a marked increase in apoptotic cell death in the ventral spinal cord of Gbx mutants during mid-embryonic stages. While our studies reveal that both members of the Gbx gene family are involved in development of subsets of PAX2+ dorsal interneurons and survival of ventral motor neurons, Gbx1 and Gbx2 are not sufficient to genetically compensate for the loss of one another. Thus, our studies provide novel insight to the relationship harbored between Gbx1 and Gbx2 in spinal cord development.

5.
Nature ; 531(7592): 105-9, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26863197

RESUMO

The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.


Assuntos
Linhagem da Célula , Terapia Baseada em Transplante de Células e Tecidos , Descoberta de Drogas/métodos , Sistema Nervoso Entérico/patologia , Doença de Hirschsprung/tratamento farmacológico , Doença de Hirschsprung/patologia , Neurônios/patologia , Envelhecimento , Animais , Diferenciação Celular , Linhagem Celular , Movimento Celular , Separação Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Embrião de Galinha , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Doença de Hirschsprung/terapia , Humanos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Pepstatinas/metabolismo , Células-Tronco Pluripotentes/patologia , Receptor de Endotelina B/metabolismo , Transdução de Sinais
6.
Stem Cell Reports ; 4(4): 658-69, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25754204

RESUMO

Epigenetic regulation of key transcriptional programs is a critical mechanism that controls hematopoietic development, and, thus, aberrant expression patterns or mutations in epigenetic regulators occur frequently in hematologic malignancies. We demonstrate that the Polycomb protein L3MBTL1, which is monoallelically deleted in 20q- myeloid malignancies, represses the ability of stem cells to drive hematopoietic-specific transcriptional programs by regulating the expression of SMAD5 and impairing its recruitment to target regulatory regions. Indeed, knockdown of L3MBTL1 promotes the development of hematopoiesis and impairs neural cell fate in human pluripotent stem cells. We also found a role for L3MBTL1 in regulating SMAD5 target gene expression in mature hematopoietic cell populations, thereby affecting erythroid differentiation. Taken together, we have identified epigenetic priming of hematopoietic-specific transcriptional networks, which may assist in the development of therapeutic approaches for patients with anemia.


Assuntos
Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteína Smad5/metabolismo , Transcrição Gênica , Regulação para Baixo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Repressoras , Proteína Smad5/genética , Proteínas Supressoras de Tumor
7.
Cell Rep ; 8(6): 1677-1685, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25242333

RESUMO

The long-term risk of malignancy associated with stem cell therapies is a significant concern in the clinical application of this exciting technology. We report a cancer-selective strategy to enhance the safety of stem cell therapies. Briefly, using a cell engineering approach, we show that aggressive cancers derived from human or murine induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are strikingly sensitive to temporary MYC blockade. On the other hand, differentiated tissues derived from human or mouse iPSCs can readily tolerate temporary MYC inactivation. In cancer cells, endogenous MYC is required to maintain the metabolic and epigenetic functions of the embryonic and cancer-specific pyruvate kinase M2 isoform (PKM2). In summary, our results implicate PKM2 in cancer's increased MYC dependence and indicate dominant MYC inhibition as a cancer-selective fail-safe for stem cell therapies.


Assuntos
Engenharia Celular , Terapia Baseada em Transplante de Células e Tecidos/normas , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/diagnóstico por imagem , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Imageamento por Ressonância Magnética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/terapia , Neurogênese , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Radiografia , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
8.
Cell Rep ; 5(5): 1387-402, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24290755

RESUMO

Cranial placodes are embryonic structures essential for sensory and endocrine organ development. Human placode development has remained largely inaccessible despite the serious medical conditions caused by the dysfunction of placode-derived tissues. Here, we demonstrate the efficient derivation of cranial placodes from human pluripotent stem cells. Timed removal of the BMP inhibitor Noggin, a component of the dual-SMAD inhibition strategy of neural induction, triggers placode induction at the expense of CNS fates. Concomitant inhibition of fibroblast growth factor signaling disrupts placode derivation and induces surface ectoderm. Further fate specification at the preplacode stage enables the selective generation of placode-derived trigeminal ganglia capable of in vivo engraftment, mature lens fibers, and anterior pituitary hormone-producing cells that upon transplantation produce human growth hormone and adrenocorticotropic hormone in vivo. Our results establish a powerful experimental platform to study human cranial placode development and set the stage for the development of human cell-based therapies in sensory and endocrine disease.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células Endócrinas/citologia , Neurônios/citologia , Células-Tronco Pluripotentes/citologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/transplante , Células Endócrinas/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/citologia , Hormônio do Crescimento/metabolismo , Humanos , Cristalino/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neurônios/metabolismo , Periferinas/genética , Periferinas/metabolismo , Hipófise/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/transplante , Gânglio Trigeminal/citologia
9.
Cell Stem Cell ; 13(6): 691-705, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24315443

RESUMO

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinson's disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.


Assuntos
Envelhecimento/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Reprogramação Celular , Senescência Celular , Criança , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/transplante , Neurônios Dopaminérgicos/ultraestrutura , Fibroblastos/metabolismo , Humanos , Lamina Tipo A , Mesencéfalo/patologia , Camundongos , Pessoa de Meia-Idade , Doença de Parkinson/patologia , Fenótipo , Doadores de Tecidos
10.
J Clin Invest ; 122(8): 2928-39, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22751106

RESUMO

Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.


Assuntos
Neurônios Dopaminérgicos/transplante , Células-Tronco Embrionárias/transplante , Células-Tronco Neurais/transplante , Animais , Diferenciação Celular , Linhagem Celular , Separação Celular/métodos , Sobrevivência Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genes Reporter , Sobrevivência de Enxerto , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcriptoma
11.
Nature ; 480(7378): 547-51, 2011 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22056989

RESUMO

Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson's disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson's disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson's disease.


Assuntos
Transplante de Tecido Encefálico , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Embrionárias/citologia , Doença de Parkinson/terapia , Animais , Diferenciação Celular , Linhagem Celular , Sobrevivência Celular , Feminino , Humanos , Macaca mulatta , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ratos , Ratos Sprague-Dawley
13.
Nat Neurosci ; 9(6): 770-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16715081

RESUMO

Sensory information from the periphery is integrated and transduced by excitatory and inhibitory interneurons in the dorsal spinal cord. Recent studies have identified a number of postmitotic factors that control the generation of these sensory interneurons. We show that Gsh1/2 and Ascl1 (Mash1), which are expressed in sensory interneuron progenitors, control the choice between excitatory and inhibitory cell fates in the developing mouse spinal cord. During the early phase of neurogenesis, Gsh1/2 and Ascl1 coordinately regulate the expression of Tlx3, which is a critical postmitotic determinant for dorsal glutamatergic sensory interneurons. However, at later developmental times, Ascl1 controls the expression of Ptf1a in dIL(A) progenitors to promote inhibitory neuron differentiation while at the same time upregulating Notch signaling to ensure the proper generation of dIL(B) excitatory neurons. We propose that this switch in Ascl1 function enables the cogeneration of inhibitory and excitatory sensory interneurons from a common pool of dorsal progenitors.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Proteínas de Homeodomínio/genética , Interneurônios/metabolismo , Células do Corno Posterior/embriologia , Animais , Potenciais Pós-Sinápticos Excitadores/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Inibição Neural/genética , Vias Neurais/citologia , Vias Neurais/embriologia , Vias Neurais/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transmissão Sináptica/genética , Fatores de Transcrição/genética
14.
Development ; 132(13): 2991-3002, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15930101

RESUMO

The molecular programs that specify progenitors in the dorsal spinal cord remain poorly defined. The homeodomain transcription factor Gsh2 is expressed in the progenitors of three dorsal interneuron subtypes, dI3, dI4 and dI5 neurons, whereas Gsh1 is only expressed in dI4 and dI5 progenitors. Mice lacking Gsh2 exhibit a selective loss of dI3 interneurons that is accompanied by an expansion of the dI2 progenitor domain. In Gsh2 mutant embryos, expression of the proneural bHLH protein Mash1 is downregulated in dI3 neural progenitors, with Mash1 mutants exhibiting a concordant reduction in dI3 neurons. Conversely, overexpression of Gsh2 and Mash1 leads to the ectopic production of dI3 neurons and a concomitant repression of Ngn1 expression. Our results provide evidence that genetic interactions involving repression of Ngn1 by Gsh2 promote the differentiation of dI3 neurons from class A progenitors.


Assuntos
Diferenciação Celular/fisiologia , Regulação para Baixo/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/citologia , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inibidores do Crescimento/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/biossíntese , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA