Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pediatr Dermatol ; 40(6): 1107-1111, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37202834

RESUMO

We present a case of cutaneous granulomatous disease associated with rubella virus in a 4-year-old girl without an identifiable immunodeficiency. In this case, a combination of anti-inflammatory, anti-viral, and anti-neutrophil therapies successfully treated vision-threatening eyelid, conjunctival, scleral, and orbital inflammation.


Assuntos
Síndromes de Imunodeficiência , Dermatopatias , Feminino , Humanos , Pré-Escolar , Vírus da Rubéola , Granuloma/tratamento farmacológico , Dermatopatias/complicações , Pálpebras , Inflamação/complicações
2.
Nat Genet ; 54(8): 1214-1226, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864190

RESUMO

Cirrhosis is usually a late-onset and life-threatening disease characterized by fibrotic scarring and inflammation that disrupts liver architecture and function. While it is typically the result of alcoholism or hepatitis viral infection in adults, its etiology in infants is much less understood. In this study, we report 14 children from ten unrelated families presenting with a syndromic form of pediatric liver cirrhosis. By genome/exome sequencing, we found recessive variants in FOCAD segregating with the disease. Zebrafish lacking focad phenocopied the human disease, revealing a signature of altered messenger RNA (mRNA) degradation processes in the liver. Using patient's primary cells and CRISPR-Cas9-mediated inactivation in human hepatic cell lines, we found that FOCAD deficiency compromises the SKI mRNA surveillance pathway by reducing the levels of the RNA helicase SKIC2 and its cofactor SKIC3. FOCAD knockout hepatocytes exhibited lowered albumin expression and signs of persistent injury accompanied by CCL2 overproduction. Our results reveal the importance of FOCAD in maintaining liver homeostasis and disclose a possible therapeutic intervention point via inhibition of the CCL2/CCR2 signaling axis.


Assuntos
Cirrose Hepática , Proteínas Supressoras de Tumor , Adulto , Animais , Criança , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome , Proteínas Supressoras de Tumor/genética , Peixe-Zebra/genética
3.
J Inherit Metab Dis ; 45(2): 157-168, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625984

RESUMO

Methionine synthase deficiency (cblG complementation group) is a rare inborn error of metabolism affecting the homocysteine re-methylation pathway. It leads to a biochemical phenotype of hyperhomocysteinemia and hypomethioninemia. The clinical presentation of cblG is variable, ranging from seizures, encephalopathy, macrocytic anemia, hypotonia, and feeding difficulties in the neonatal period to onset of psychiatric symptoms or acute neurologic changes in adolescence or adulthood. Given the variable and nonspecific symptoms seen in cblG, the diagnosis of affected patients is often delayed. Medical management of cblG includes the use of hydroxocobalamin, betaine, folinic acid, and in some cases methionine supplementation. Treatment has been shown to lead to improvement in the biochemical profile of affected patients, with lowering of total homocysteine levels and increasing methionine levels. However, the published literature contains differing conclusions on whether treatment is effective in changing the natural history of the disease. Herein, we present five patients with cblG who have shown substantial clinical benefit from treatment with objective improvement in their neurologic outcomes. We demonstrate more favorable outcomes in our patients who were treated early in life, especially those who were treated before neurologic symptoms manifested. Given improved outcomes from treatment of presymptomatic patients, cblG warrants inclusion in newborn screening.


Assuntos
Metionina , Vitamina B 12 , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/deficiência , Adulto , Erros Inatos do Metabolismo dos Aminoácidos , Diagnóstico Precoce , Homocisteína , Humanos , Erros Inatos do Metabolismo , Vitamina B 12/metabolismo
4.
Mol Genet Metab ; 133(3): 231-241, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33985889

RESUMO

One of the most vital elements of management for patients with inborn errors of intermediary metabolism is the promotion of anabolism, the state in which the body builds new components, and avoidance of catabolism, the state in which the body breaks down its own stores for energy. Anabolism is maintained through the provision of a sufficient supply of substrates for energy, as well as critical building blocks of essential amino acids, essential fatty acids, and vitamins for synthetic function and growth. Patients with metabolic diseases are at risk for decompensation during prolonged fasting, which often occurs during illnesses in which enteral intake is compromised. During these times, intravenous nutrition must be supplied to fully meet the specific nutritional needs of the patient. We detail our approach to intravenous management for metabolic patients and its underlying rationale. This generally entails a combination of intravenous glucose and lipid as well as early introduction of protein and essential vitamins. We exemplify the utility of our approach in case studies, as well as scenarios and specific disorders which require a more careful administration of nutritional substrates or a modification of macronutrient ratios.


Assuntos
Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/terapia , Metabolismo , Administração Intravenosa , Criança , Dieta Cetogênica , Glucose/administração & dosagem , Humanos , Lipídeos/administração & dosagem , Estado Nutricional , Vitaminas/administração & dosagem
5.
Mol Genet Metab ; 131(4): 398-404, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33279411

RESUMO

Genetic defects in mitochondrial DNA encoded tRNA genes impair mitochondrial translation with resultant defects in the mitochondrial respiratory chain and oxidative phosphorylation system. The phenotypic spectrum of disease seen in mitochondrial tRNA defects is variable and proving pathogenicity of new variants is challenging. Only three pathogenic variants have been described previously in the mitochondrial tRNATyr gene MT-TY, with the reported phenotypes consisting largely of adult onset myopathy and ptosis. We report a patient with a novel MT-TY acceptor stem variant m.5889A>G at high heteroplasmy in muscle, low in blood, and absent in the mother's blood. The phenotype consisted of a childhood-onset severe multi-system disorder characterized by a neurodegenerative course including ataxia and seizures, failure-to-thrive, combined myopathy and neuropathy, and hearing and vision loss. Brain imaging showed progressive atrophy and basal ganglia calcifications. Mitochondrial biomarkers lactate and GDF15 were increased. Functional studies showed a deficient activity of the respiratory chain enzyme complexes containing mtDNA-encoded subunits I, III and IV. There were decreased steady state levels of these mitochondrial complex proteins, and presence of incompletely assembled complex V forms in muscle. These changes are typical of a mitochondrial translational defect. These data support the pathogenicity of this novel variant. Careful review of variants in MT-TY additionally identified two other pathogenic variants, one likely pathogenic variant, nine variants of unknown significance, five likely benign and four benign variants.


Assuntos
DNA Mitocondrial/genética , Doenças Musculares/genética , RNA de Transferência/genética , Tirosina/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação/genética , Fosforilação Oxidativa , Fenótipo
6.
Arch Biochem Biophys ; 504(2): 182-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20836986

RESUMO

4-Hydroxy-2-trans-nonenal (HNE) is a lipid peroxidation product that contributes to the pathophysiology of several diseases with components of oxidative stress. The electrophilic nature of HNE results in covalent adduct formation with proteins, fatty acids and DNA. However, it remains unclear whether enzymes that metabolize HNE avoid inactivation by it. Glutathione transferase A4-4 (GST A4-4) plays a significant role in the elimination of HNE by conjugating it with glutathione (GSH), with catalytic activity toward HNE that is dramatically higher than the homologous GST A1-1 or distantly related GSTs. To determine whether enzymes that metabolize HNE resist its covalent adduction, the rates of adduction of these GST isoforms were compared and the functional effects of adduction on catalytic properties were determined. Although GST A4-4 and GST A1-1 have striking structural similarity, GST A4-4 was insensitive to adduction by HNE under conditions that yield modest adduction of GST A1-1 and extensive adduction of GST P1-1. Furthermore, adduction of GST P1-1 by HNE eliminated its activity toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB) and toward HNE itself. HNE effects on GST A4-4 and A1-1 were less significant. The results indicate that enzymes that metabolize HNE may have evolved structurally to resist covalent adduction by it.


Assuntos
Aldeídos/química , Glutationa Transferase/química , Catálise , Cristalografia por Raios X , Dinitroclorobenzeno/química , Glutationa S-Transferase pi/química , Isoenzimas/química , Cinética , Modelos Moleculares , Conformação Proteica
7.
Biochemistry ; 49(7): 1541-8, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20085333

RESUMO

Conjugation to glutathione (GSH) by glutathione transferase A4-4 (GSTA4-4) is a major route of elimination for the lipid peroxidation product 4-hydroxynonenal (HNE), a toxic compound that contributes to numerous diseases. Both enantiomers of HNE are presumed to be toxic, and GSTA4-4 has negligible stereoselectivity toward them, despite its high catalytic chemospecificity for alkenals. In contrast to the highly flexible, and substrate promiscuous, GSTA1-1 isoform that has poor catalytic efficiency with HNE, GSTA4-4 has been postulated to be a rigid template that is preorganized for HNE metabolism. However, the combination of high substrate chemoselectivity and low substrate stereoselectivity is intriguing. The mechanism by which GSTA4-4 achieves this combination is important, because it must metabolize both enantiomers of HNE to efficiently detoxify the biologically formed mixture. The crystal structures of GSTA4-4 and an engineered variant of GSTA1-1 with high catalytic efficiency toward HNE, cocrystallized with a GSH-HNE conjugate analogue, demonstrate that GSTA4-4 undergoes no enantiospecific induced fit; instead, the active site residue Arg15 is ideally located to interact with the 4-hydroxyl group of either HNE enantiomer. The results reveal an evolutionary strategy for achieving biologically useful stereopromiscuity toward a toxic racemate, concomitant with high catalytic efficiency and substrate specificity toward an endogenously formed toxin.


Assuntos
Aldeídos/metabolismo , Aldeídos/toxicidade , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Aldeídos/química , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Glutationa Transferase/genética , Humanos , Ligantes , Estresse Oxidativo/genética , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato/genética
8.
Biochemistry ; 48(32): 7698-704, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19618965

RESUMO

The specificity of human glutathione transferase (GST) A1-1 is drastically altered to favor alkenal substrates in the GIMFhelix mutant designed to mimic first-sphere interactions utilized by GSTA4-4. This redesign serves as a model for improving our understanding of the structural determinants that contribute to the distinct specificities of alpha class GSTs. Herein we report the first crystal structures of GIMFhelix, both in complex with GSH and in apo form at 1.98 and 2.38 A resolution. In contrast to the preorganized hydrophobic binding pocket that accommodates alkenals in GSTA4-4, GSTA1-1 includes a dynamic alpha9 helix that undergoes a ligand-dependent localization to complete the active site. Comparisons of the GIMFhelix structures with previously reported structures show a striking similarity with the GSTA4-4 active site obtained within an essentially GSTA1-1 scaffold and reveal the alpha9 helix assumes a similar localized structure regardless of active site occupancy in a manner resembling that of GSTA4-4. However, we cannot fully account for all the structural elements important in GSTA4-4 within the mutant's active site. The contribution of Phe10 to the Tyr212-Phe10-Phe220 network prevents complete C-terminal closure and demonstrates that the presence of Phe10 within the context of a GSTA4-4-like active site may ultimately hinder Phe220, a key C-terminal residue, from effectively contributing to the active site. In total, these results illustrate the remaining structural differences presumably reflected in the previously reported catalytic efficiencies of GIMFhelix and GSTA4-4 and emphasize the F10P mutation as being necessary to completely accomplish the transformation to a highly specific GST from the more promiscuous GSTA1-1 enzyme.


Assuntos
Alcenos , Glutationa Transferase , Isoenzimas , Estrutura Terciária de Proteína , Especificidade por Substrato/genética , Alcenos/química , Alcenos/toxicidade , Catálise , Domínio Catalítico/genética , Cristalografia por Raios X , Glutationa Transferase/química , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA