Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38659969

RESUMO

Multisystem Inflammatory Syndrome in Children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multi-organ involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong antibody production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 weeks after infection. Therefore, we hypothesized that dysfunctional cell-mediated antibody responses downstream of antibody production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, while natural killer (NK) cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Together, our results reveal dysregulation in antibody-mediated cellular responses unique to MIS-C that likely contribute to the immune pathology of this disease.

2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645925

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent for the worldwide COVID-19 pandemic, is known to infect people of all ages and both sexes. Senior populations have the greatest risk of severe disease, and sexual dimorphism in clinical outcomes has been reported in COVID-19. SARS-CoV-2 infection in humans can cause damage to multiple organ systems, including the brain. Neurological symptoms are widely observed in patients with COVID-19, with many survivors suffering from persistent neurological and cognitive impairment, potentially accelerating Alzheimer's disease. The present study aims to investigate the impact of age and sex on the neuroinflammatory response to SARS-CoV-2 infection using a mouse model. Wild-type C57BL/6 mice were inoculated, by intranasal route, with SARS-CoV-2 lineage B.1.351 variant known to infect mice. Older animals and in particular males exhibited a significantly greater weight loss starting at 4 dpi. In addition, male animals exhibited higher viral RNA loads and higher titers of infectious virus in the lung, which was particularly evident in males at 16 months of age. Notably, no viral RNA was detected in the brains of infected mice, regardless of age or sex. Nevertheless, expression of IL-6, TNF-α, and CCL-2 in the lung and brain was increased with viral infection. An unbiased brain RNA-seq/transcriptomic analysis showed that SARS-CoV-2 infection caused significant changes in gene expression profiles in the brain, with innate immunity, defense response to virus, cerebravascular and neuronal functions, as the major molecular networks affected. The data presented in this study show that SARS-CoV-2 infection triggers a neuroinflammatory response despite the lack of detectable virus in the brain. Age and sex have a modifying effect on this pathogenic process. Aberrant activation of innate immune response, disruption of blood-brain barrier and endothelial cell integrity, and supression of neuronal activity and axonogenesis underlie the impact of SARS-CoV-2 infection on the brain. Understanding the role of these affected pathways in SARS-CoV-2 pathogenesis helps identify appropriate points of therapeutic interventions to alleviate neurological dysfunction observed during COVID-19.

3.
BMC Ophthalmol ; 22(1): 518, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585637

RESUMO

BACKGROUND: The purpose of this study was: [1] to evaluate the infectivity of two SARS-CoV-2 lineage A variants on human ocular tissues in vitro, and [2] to evaluate the stability of SARS-CoV-2 lineage A variants in corneal preservation medium. METHODS: Primary cultures of donor corneal, conjunctival, and limbal epithelium were inoculated with two lineage A, GISAID clade S isolates of SARS-CoV-2 (Hong Kong/VM20001061/2020, USA-WA1/2020), to evaluate the susceptibility of the ocular tissue to infection. Flat-mounted Descemet's Stripping Automated Endothelial Keratoplasty (DSAEK) grafts were inoculated with SARS-CoV-2 to evaluate the susceptibility of the endothelium to infection. All inoculated samples were immunostained for SARS-CoV-2 nucleocapsid (N)-protein expression to confirm positive infection. SARS-CoV-2 Hong Kong was then inoculated into cornea preservation media (Life4°C, Numedis, Inc.). Inoculated media was stored at 4oC for 14 days and assayed over time for changes in infectious viral titers. RESULTS: Corneal, conjunctival, and limbal epithelial cells all demonstrated susceptibility to infection by SARS-CoV-2 lineage A variants. Conjunctiva demonstrated the highest infection rate (78% of samples infected [14/18]); however, infection rates did not differ statistically between cell types and viral isolates. After inoculation, 40% (4/10) of DSAEK grafts had active infection in the endothelium. SARS-CoV-2 lineage A demonstrated < 1 log decline in viral titers out to 14 days in corneal preservation media. CONCLUSIONS: SARS-CoV-2 lineage A variants can infect corneal, limbal, and conjunctival epithelium, as well as corneal endothelium. There was no statistical difference in infectivity between different lineage A variants. SARS-CoV-2 lineage A can survive and remain infectious in corneal preservation media out to 14 days in cold storage.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Córnea/cirurgia , Endotélio Corneano/transplante , Túnica Conjuntiva
4.
Nano Futures ; 6(2)2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36199556

RESUMO

Magnetic nanoparticles (MNPs) have unique physical and chemical properties, such as high surface area to volume ratio and size-related magnetism, which are completely different from their bulk materials. Benefiting from the facile synthesis and chemical modification strategies, MNPs have been widely studied for applications in nanomedicine. Herein, we firstly summarized the designs of MNPs from the perspectives of materials and physicochemical properties tailored for biomedical applications. Magnetic particle spectroscopy (MPS), first reported in 2006, has flourished as an independent platform for many biological and biomedical applications. It has been extensively reported as a versatile platform for a variety of bioassays along with the artificially designed MNPs, where the MNPs serve as magnetic nanoprobes to specifically probe target analytes from fluid samples. In this review, the mechanisms and theories of different MPS platforms realizing volumetric- and surface-based bioassays are discussed. Some representative works of MPS platforms for applications such as disease diagnosis, food safety and plant pathology monitoring, drug screening, thrombus maturity assessments are reviewed. At the end of this review, we commented on the rapid growth and booming of MPS-based bioassays in its first 15 years. We also prospected opportunities and challenges that portable MPS devices face in the rapidly growing demand for fast, inexpensive, and easy-to-use biometric techniques.

5.
Viruses ; 13(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34960780

RESUMO

Broad-spectrum antiviral therapies hold promise as a first-line defense against emerging viruses by blunting illness severity and spread until vaccines and virus-specific antivirals are developed. The nucleobase favipiravir, often discussed as a broad-spectrum inhibitor, was not effective in recent clinical trials involving patients infected with Ebola virus or SARS-CoV-2. A drawback of favipiravir use is its rapid clearance before conversion to its active nucleoside-5'-triphosphate form. In this work, we report a synergistic reduction of flavivirus (dengue, Zika), orthomyxovirus (influenza A), and coronavirus (HCoV-OC43 and SARS-CoV-2) replication when the nucleobases favipiravir or T-1105 were combined with the antimetabolite 6-methylmercaptopurine riboside (6MMPr). The 6MMPr/T-1105 combination increased the C-U and G-A mutation frequency compared to treatment with T-1105 or 6MMPr alone. A further analysis revealed that the 6MMPr/T-1105 co-treatment reduced cellular purine nucleotide triphosphate synthesis and increased conversion of the antiviral nucleobase to its nucleoside-5'-monophosphate, -diphosphate, and -triphosphate forms. The 6MMPr co-treatment specifically increased production of the active antiviral form of the nucleobases (but not corresponding nucleosides) while also reducing levels of competing cellular NTPs to produce the synergistic effect. This in-depth work establishes a foundation for development of small molecules as possible co-treatments with nucleobases like favipiravir in response to emerging RNA virus infections.


Assuntos
Antimetabólitos/farmacologia , Antivirais/farmacologia , Vírus de RNA/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Amidas/farmacologia , Animais , Linhagem Celular , Sinergismo Farmacológico , Guanosina Trifosfato/metabolismo , Humanos , Metiltioinosina/farmacologia , Mutação/efeitos dos fármacos , Fosforribosil Pirofosfato/metabolismo , Pirazinas/farmacologia , Vírus de RNA/classificação , Vírus de RNA/genética , RNA Viral/efeitos dos fármacos , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
6.
Microbiol Resour Announc ; 10(33): e0026021, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34410155

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) continues to mutate, causing disruptive PRRS outbreaks in farms that lead to reproductive failure and respiratory disease-associated mortality. We present four new PRRSV type 2 variants in the United States belonging to four distinct orf5 sublineages within lineage 1.

7.
ACS Appl Mater Interfaces ; 13(7): 7966-7976, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33566573

RESUMO

Nowadays, there is an increasing demand for more accessible routine diagnostics for patients with respect to high accuracy, ease of use, and low cost. However, the quantitative and high accuracy bioassays in large hospitals and laboratories usually require trained technicians and equipment that is both bulky and expensive. In addition, the multistep bioassays and long turnaround time could severely affect the disease surveillance and control especially in pandemics such as influenza and COVID-19. In view of this, a portable, quantitative bioassay device will be valuable in regions with scarce medical resources and help relieve burden on local healthcare systems. Herein, we introduce the MagiCoil diagnostic device, an inexpensive, portable, quantitative, and rapid bioassay platform based on the magnetic particle spectrometer (MPS) technique. MPS detects the dynamic magnetic responses of magnetic nanoparticles (MNPs) and uses the harmonics from oscillating MNPs as metrics for sensitive and quantitative bioassays. This device does not require trained technicians to operate and employs a fully automatic, one-step, and wash-free assay with a user friendly smartphone interface. Using a streptavidin-biotin binding system as a model, we show that the detection limit of the current portable device for streptavidin is 64 nM (equal to 5.12 pmole). In addition, this MPS technique is very versatile and allows for the detection of different diseases just by changing the surface modifications on MNPs. Although MPS-based bioassays show high sensitivities as reported in many literatures, at the current stage, this portable device faces insufficient sensitivity and needs further improvements. It is foreseen that this kind of portable device can transform the multistep, laboratory-based bioassays to one-step field testing in nonclinical settings such as schools, homes, offices, etc.


Assuntos
Bioensaio , Nanopartículas de Magnetita/química , Smartphone , Estreptavidina/análise , Bioensaio/instrumentação , COVID-19/diagnóstico , Humanos , Hidrodinâmica , Influenza Humana/diagnóstico , Fenômenos Magnéticos , Tamanho da Partícula , Propriedades de Superfície
8.
J Phys Chem C Nanomater Interfaces ; 125(31): 17221-17231, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36199678

RESUMO

In recent years, magnetic particle spectroscopy (MPS) has become a highly sensitive and versatile sensing technique for quantitative bioassays. It relies on the dynamic magnetic responses of magnetic nanoparticles (MNPs) for the detection of target analytes in the liquid phase. There are many research studies reporting the application of MPS for detecting a variety of analytes including viruses, toxins, nucleic acids, and so forth. Herein, we report a modified version of the MPS platform with the addition of a one-stage lock-in design to remove the feedthrough signals induced by external driving magnetic fields, thus capturing only MNP responses for improved system sensitivity. This one-stage lock-in MPS system is able to detect as low as 781 ng multi-core Nanomag50 iron oxide MNPs (micromod Partikeltechnologie GmbH) and 78 ng single-core SHB30 iron oxide MNPs (Ocean NanoTech). We first demonstrated the performance of this MPS system for bioassay-related applications. Using the SARS-CoV-2 spike protein as a model, we have achieved a detection limit of 125 nM (equal to 5 pmole) for detecting spike protein molecules in the liquid phase. In addition, using a streptavidin-biotin binding system as a proof-of-concept, we show that these single-core SHB30 MNPs can be used for Brownian relaxation-based bioassays while the multi-core Nanomag50 cannot be used. The effects of MNP amount on the concentration-dependent response profiles for detecting streptavidin were also investigated. Results show that by using a lower concentration/ amount of MNPs, concentration-response curves shift to a lower concentration/amount of target analytes. This lower concentration-response indicates the possibility of improved bioassay sensitivities by using lower amounts of MNPs.

9.
PLoS One ; 15(10): e0232858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002018

RESUMO

Zika virus (ZIKV) exhibits a tropism for brain tumor cells and has been used as an oncolytic virus to target brain tumors in mice with modest effects on extending median survival. Recent studies have highlighted the potential for combining virotherapy and immunotherapy to target cancer. We postulated that ZIKV could be used as an adjuvant to enhance the long-term survival of mice with malignant glioblastoma and generate memory T-cells capable of providing long-term immunity against cancer remission. To test this hypothesis mice bearing malignant intracranial GL261 tumors were subcutaneously vaccinated with irradiated GL261 cells previously infected with the ZIKV. Mice also received intracranial injections of live ZIKV, irradiation attenuated ZIKV, or irradiated GL261 cells previously infected with ZIKV. Long-term survivors were rechallenged with a second intracranial tumor to examine their immune response and look for the establishment of protective memory T-cells. Mice with subcutaneous vaccination plus intracranial irradiation attenuated ZIKV or intracranial irradiated GL261 cells previously infected with ZIKV exhibited the greatest extensions to overall survival. Flow cytometry analysis of immune cells within the brains of long-term surviving mice after tumor rechallenge revealed an increase in the number of T-cells, including CD4+ and tissue-resident effector/ effector memory CD4+ T-cells, in comparison to long-term survivors that were mock-rechallenged, and in comparison to naïve untreated mice challenged with intracranial gliomas. These results suggest that ZIKV can serve as an adjuvant to subcutaneous tumor vaccines that enhance long-term survival and generate protective tissue-resident memory CD4+ T-cells.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Terapia Viral Oncolítica , Linfócitos T/imunologia , Zika virus/imunologia , Adjuvantes Imunológicos , Animais , Neoplasias Encefálicas/imunologia , Linfócitos T CD4-Positivos/imunologia , Vacinas Anticâncer , Glioblastoma/imunologia , Memória Imunológica , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL
10.
PLoS One ; 15(4): e0231723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343704

RESUMO

Understanding the immune responses against Porcine epidemic diarrhea virus (PEDV) is important to prevent infection and to design control strategies. We evaluated both systemic and mucosal immune responses to PEDV in pigs and assessed if prior exposure to virus protects against re-infection. Three-week-old pigs were infected with PEDV and immune response in blood, intestine, and mesenteric lymph node (MLN) was evaluated. At 30 dpi, virus exposed pigs were challenged with a field isolate of PEDV and immune response at 5 d post challenge was evaluated. We found that PEDV RNA persists in the intestine even after fecal shedding of the virus was stopped at 28 dpi and pigs previously exposed to PEDV are protected from virus shedding after re-infection. PEDV infection induced both humoral and cell mediated immune response with an increase in PEDV specific IgA and IgG antibodies in intestine and serum. Flow cytometry analysis showed a significantly higher frequency of B cells and lower frequency of T cells at 4 dpi. The frequency of CD4/CD8 double positive (DP) memory T cells was significantly increased in the MLN of challenged animals. These studies may provide further insights into understanding the mucosal immune response to PEDV and its role in protection against disease.


Assuntos
Anticorpos Antivirais/análise , Infecções por Coronavirus/imunologia , Diarreia/imunologia , Vírus da Diarreia Epidêmica Suína/imunologia , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/metabolismo , Linfócitos B/imunologia , Infecções por Coronavirus/sangue , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Diarreia/sangue , Diarreia/veterinária , Diarreia/virologia , Resistência à Doença/imunologia , Fezes/microbiologia , Imunidade Celular , Imunidade Humoral , Imunidade nas Mucosas , Imunoglobulina A/análise , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/isolamento & purificação , RNA Viral/isolamento & purificação , Suínos , Linfócitos T/imunologia , Eliminação de Partículas Virais
11.
ACS Appl Mater Interfaces ; 12(12): 13686-13697, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32150378

RESUMO

Magnetic nanoparticles (MNPs) with proper surface functionalization have been extensively applied as labels for magnetic immunoassays, carriers for controlled drug/gene delivery, tracers and contrasts for magnetic imaging, etc. Here, we introduce a new biosensing scheme based on magnetic particle spectroscopy (MPS) and the self-assembly of MNPs to quantitatively detect H1N1 nucleoprotein molecules. MPS monitors the harmonics of oscillating MNPs as a metric for the freedom of rotational process, thus indicating the bound states of MNPs. These harmonics can be readily collected from nanogram quantities of iron oxide nanoparticles within 10 s. The H1N1 nucleoprotein molecule hosts multiple different epitopes that forms binding sites for many IgG polyclonal antibodies. Anchoring IgG polyclonal antibodies onto MNPs triggers the cross-linking between MNPs and H1N1 nucleoprotein molecules, thereby forming MNP self-assemblies. Using MPS and the self-assembly of MNPs, we were able to detect as low as 44 nM (4.4 pmole) H1N1 nucleoprotein. In addition, the morphologies and the hydrodynamic sizes of the MNP self-assemblies are characterized to verify the MPS results. Different MNP self-assembly models such as classical cluster, open ring tetramer, and chain model as well as multimers (from dimer to pentamer) are proposed in this paper. Herein, we claim the feasibility of using MPS and the self-assembly of MNPs as a new biosensing scheme for detecting ultralow concentrations of target biomolecules, which can be employed as rapid, sensitive, and wash-free magnetic immunoassays.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Influenza Humana/diagnóstico , Nanopartículas de Magnetita/química , Nucleoproteínas/isolamento & purificação , Técnicas Biossensoriais/métodos , Compostos Férricos/química , Humanos , Imunoglobulina G/química , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/genética , Influenza Humana/virologia , Nucleoproteínas/química
12.
ACS Appl Nano Mater ; 3(10): 9560-9580, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37556271

RESUMO

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is a threat to the global healthcare system and economic security. As of July 2020, no specific drugs or vaccines are yet available for COVID-19; a fast and accurate diagnosis for SARS-CoV-2 is essential in slowing the spread of COVID-19 and for efficient implementation of control and containment strategies. Magnetic nanosensing is an emerging topic representing the frontiers of current biosensing and magnetic areas. The past decade has seen rapid growth in applying magnetic tools for biological and biomedical applications. Recent advances in magnetic nanomaterials and nanotechnologies have transformed current diagnostic methods to nanoscale and pushed the detection limit to early-stage disease diagnosis. Herein, this review covers the literature of magnetic nanosensors for virus and pathogen detection before COVID-19. We review popular magnetic nanosensing techniques including magnetoresistance, magnetic particle spectroscopy, and nuclear magnetic resonance. Magnetic point-of-care diagnostic kits are also reviewed aiming at developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak as well as preventing future epidemics. In addition, other platforms that use magnetic nanomaterials as auxiliary tools for enhanced pathogen and virus detection are also covered. The goal of this review is to inform the researchers of diagnostic and surveillance platforms for SARS-CoV-2 and their performances.

13.
Cell Transplant ; 28(9-10): 1091-1105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31426664

RESUMO

Blastocyst complementation combined with gene editing is an emerging approach in the field of regenerative medicine that could potentially solve the worldwide problem of organ shortages for transplantation. In theory, blastocyst complementation can generate fully functional human organs or tissues, grown within genetically engineered livestock animals. Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ development can open a niche for human stem cells to occupy, thus generating human tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung, and skeletal muscle, as well as cells of the immune and nervous systems. Within each of these organ systems, we identify and discuss (i) the common causes of organ failure; (ii) the current state of regenerative therapies; and (iii) the candidate genes to knockout and enable specific exogenous organ development via the use of blastocyst complementation. We also highlight some of the current barriers limiting the success of blastocyst complementation.


Assuntos
Animais Geneticamente Modificados , Blastocisto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Órgãos , Organogênese , Células-Tronco Pluripotentes , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Humanos
14.
Front Microbiol ; 10: 1077, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164877

RESUMO

The dissemination of Influenza A virus (IAV) throughout the world has become one of the main concerns for the health of both animals and human beings. An efficient and sensitive diagnostic tool is thus needed for the early detection of IAV. Here, we developed a wash-free magnetic bioassay and further integrated it with a handheld platform based on giant-magnetoresistance (GMR) sensors. The wash-free magnetic bioassay significantly accelerates and simplifies the detection process. This brand-new system was successful in detecting both IAV nucleoprotein and IAV-contained nasal swab samples from pigs on the farm. The limit of detection (LOD) is 0.3 nM for IAV nucleoprotein and 250 TCID50/mL for IAV-spiked nasal swab samples. The detection of nasal swab samples containing unpurified IAV was also performed, demonstrating the capability of the magnetic wash-free assay in the detection of biomarkers in complex sample matrix.

15.
Food Microbiol ; 75: 47-54, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30056962

RESUMO

In recent years a number of new nanotechnology based platforms have been developed for detection of wide variety of targets including infectious agents, protein biomarkers, nucleic acids, drugs, and cancer cells. Nanomaterials such as magnetic nanoparticles, quantum dots, carbon nanotubes, nanowires, and nanosensors like giant magnetoresistance (GMR) sensors are used to quantitatively detect biomolecules with, experimentally, relatively good accuracy. There has been a growing interest in the use of magnetic fields in biosensing applications. Because biological samples have no ferromagnetic property and therefore there is no interference with complex sample matrix, detection of infectious agents from minimally processed samples is possible. Here, we provide a brief overview of the recent emergence of nanotechnology-based techniques for the detection and monitoring of foodborne diseases. In addition, the potential applications and future perspectives of nanotechnology on food safety are discussed. Ultimately, the review is expected to stimulate and provide directions to the development and application of nanotechnology-based tests for the early detection, and eventual control of foodborne diseases.


Assuntos
Técnicas Biossensoriais/métodos , Inocuidade dos Alimentos/métodos , Nanoestruturas/química , Nanotecnologia , Técnicas Biossensoriais/instrumentação
16.
Vet Sci ; 5(1)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438310

RESUMO

Indirect transmission of porcine epidemic diarrhea virus (PEDV) ensues when susceptible animals contact PEDV-contaminated fomite materials. Although the survival of PEDV under various pHs and temperatures has been studied, virus stability on different fomite surfaces under varying temperature conditions has not been explored. Hence, we evaluated the survival of PEDV on inanimate objects routinely used on swine farms such as styrofoam, rubber, plastic, coveralls, and other equipment. The titer of infectious PEDV at 4 °C decreased by only 1 to 2 log during the first 5 days, and the virus was recoverable for up to 15 days on Styrofoam, aluminum, Tyvek® coverall, cloth, and plastic. However, viral titers decreased precipitously when stored at room temperature; no virus was detectable after one day on all materials tested. A more sensitive immunoplaque assay was able to detect virus from Styrofoam, metal, and plastic at 20 days post application, representing a 3-log loss of input virus on fomite materials. Recovery of infectious PEDV from Tyvek® coverall and rubber was above detection limit at 20 days. Our findings indicate that the type of fomite material and temperatures impact PEDV stability, which is important in understanding the nuances of indirect transmission and epidemiology of PEDV.

17.
ACS Sens ; 2(11): 1594-1601, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29068663

RESUMO

Influenza A virus (IAV) is a common respiratory pathogen infecting many hosts including humans, pigs (swine influenza virus or SIV), and birds (avian influenza virus or AIV). Monitoring swine and avian influenza viruses in the wild, farms, and live poultry markets is of great significance for human and veterinary public health. A portable, sensitive, and quantitative immunoassay device will be of high demand especially in the rural and resource-limited areas. We report herein our Z-Lab point-of-care (POC) device for sensitive and specific detection of swine influenza viruses with minimum sample handling and laboratory skill requirements. In the present study, a portable and quantitative immunoassay platform based on giant magnetoresistive (GMR) technology is used for the detection of IAV nucleoprotein (NP) and purified H3N2v. Z-Lab displays quantitative results in less than 10 min with sensitivities down to 15 ng/mL and 125 TCID50/mL for IAV nucleoprotein and purified H3N2v, respectively. This platform allows lab-testing to be performed outdoors and opens up the applications of immunoassays in nonclinical settings.


Assuntos
Imunoensaio/instrumentação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Fenômenos Magnéticos , Nanotecnologia/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Nucleoproteínas/análise
18.
Front Microbiol ; 7: 400, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065967

RESUMO

We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

19.
PLoS One ; 10(9): e0138704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26384331

RESUMO

Interferons (IFNs) have been shown to inhibit influenza A virus (IAV) replication and play an essential role in controlling viral infection. Here we studied the kinetics and magnitude of induction of type I and type III IFN transcripts by primary porcine airway epithelial cells (pAECs) in response to swine and human origin IAV. We observed that swine influenza viruses (SIV) replicate more efficiently than the human pandemic influenza A/California/2009 (pH1N1 CA/09) in pAECs. Interestingly, we also found significant difference in kinetics of IFN-ß, IFN-λ1 and IFN-λ3 gene expression by these viruses. While there was delay of up to 12 hours post infection (h p.i.) in induction of IFN genes in pAECs infected with swine IAV A/Sw/Illinois/2008 (H1N1 IL/08), human pH1N1 CA/09 rapidly induced IFN-ß, IFN-λ1 and IFN-λ3 gene expression as early as 4 h p.i. However, the magnitude of IFN-ß and IFN-λ3 induction at 24 h p.i. was not significantly different between the viral strains tested. Additionally, we found that swine H1N1 IL/08 was less sensitive to dsRNA induced antiviral response compared to human pH1N1 CA/09. Our data suggest that the human and swine IAVs differ in their ability to induce and respond to type I and type III interferons in swine cells. Swine origin IAV may have adapted to the pig host by subverting innate antiviral responses to viral infection.


Assuntos
Brônquios/metabolismo , Brônquios/virologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Interferons/biossíntese , Animais , Células Cultivadas , Cães , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Suínos
20.
J Virol ; 83(10): 4766-77, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19264772

RESUMO

We demonstrate the presence of nonstructural protein 1 (NS1)-specific antibodies in a significant proportion of convalescent-phase human serum samples obtained from a cohort in an area where Japanese encephalitis virus (JEV) is endemic. Sera containing antibodies to NS1 but not those with antibodies to other JEV proteins, such as envelope, brought about complement-mediated lysis of JEV-infected BHK-21 cells. Target cells infected with a recombinant poxvirus expressing JEV NS1 on the cell surface confirmed the NS1 specificity of cytolytic antibodies. Mouse anti-NS1 cytolytic sera caused a complement-dependent reduction in virus output from infected human cells, demonstrating their important role in viral control. Antibodies elicited by JEV NS1 did not cross lyse West Nile virus- or dengue virus-infected cells despite immunoprecipitating the NS1 proteins of these related flaviviruses. Additionally, JEV NS1 failed to bind complement factor H, in contrast to NS1 of West Nile virus, suggesting that the NS1 proteins of different flaviviruses have distinctly different mechanisms for interacting with the host. Our results also point to an important role for JEV NS1-specific human immune responses in protection against JE and provide a strong case for inclusion of the NS1 protein in next generation of JEV vaccines.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Proteínas não Estruturais Virais/imunologia , Animais , Linhagem Celular , Fator H do Complemento/imunologia , Fator H do Complemento/metabolismo , Encefalite Japonesa/virologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA