Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(41): 28399-410, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25147183

RESUMO

Insect ß-glucan recognition protein (ßGRP), a pathogen recognition receptor for innate immune responses, detects ß-1,3-glucan on fungal surfaces via its N-terminal carbohydrate-binding domain (N-ßGRP) and triggers serine protease cascades for the activation of prophenoloxidase (pro-PO) or Toll pathways. Using biophysical and biochemical methods, we characterized the interaction of the N-terminal domain from Manduca sexta ßGRP2 (N-ßGRP2) with laminarin, a soluble form of ß-1,3-glucan. We found that carbohydrate binding by N-ßGRP2 induces the formation of two types of protein-carbohydrate complexes, depending on the molar ratio of carbohydrate to protein ([C]/[P]). Precipitation, analytical ultracentrifugation, and chemical cross-linking experiments have shown that an insoluble aggregate forms when the molar ratio of carbohydrate to protein is low ([C]/[P] ∼ 1). In contrast, a soluble complex, containing at least five N-ßGRP2 molecules forms at a higher molar ratio of carbohydrate/protein ([C]/[P] >5). A hypothesis that this complex is assembled partly due to protein-protein interactions was supported by chemical cross-linking experiments combined with LC-MS/MS spectrometry analysis, which permitted identification of a specific intermolecular cross-link site between N-ßGRP molecules in the soluble complex. The pro-PO activation in naive plasma was strongly stimulated by addition of the insoluble aggregates of N-ßGRP2. The soluble complex with laminarin formed in the plasma also stimulated pro-PO activation, but at a lower level. Taken together, these results provide experimental evidence for novel mechanisms in which associations of ßGRP with microbial polysaccharide promotes assembly of ßGRP oligomers, which may form a platform needed to trigger the pro-PO pathway activation cascade.


Assuntos
Proteínas de Transporte/química , Precursores Enzimáticos/química , Polissacarídeos Fúngicos/química , Glucanos/química , Proteínas de Insetos/química , Manduca/genética , Monofenol Mono-Oxigenase/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Ativação Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/imunologia , Polissacarídeos Fúngicos/imunologia , Regulação da Expressão Gênica/imunologia , Glucanos/imunologia , Imunidade Inata , Proteínas de Insetos/genética , Proteínas de Insetos/imunologia , Manduca/imunologia , Manduca/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais
2.
Biochemistry ; 52(1): 161-70, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23237493

RESUMO

In response to invading microorganisms, insect ß-1,3-glucan recognition protein (ßGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the nuclear magnetic resonance (NMR) solution structure of the N-terminal domain of ßGRP (N-ßGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-ßGRP with laminarihexaose, a glucose hexamer containing ß-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~6 kDa) containing ß-1,3 and ß-1,6 links that activates the proPO pathway, to N-ßGRP results in the loss of NMR cross-peaks from the backbone (15)N-(1)H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-ßGRP-laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-ßGRP-laminarin complex in solution differs from the one in which a single N-ßGRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of an X-ray crystallographic structure of the N-ßGRP-laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements conducted with the designed mutants of N-ßGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of the N-ßGRP-laminarin macro complex and that a decreased stability is accompanied by a reduced level of activation of the proPO pathway. An increased level of ß-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of the ßGRP-ß-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway.


Assuntos
Proteínas de Transporte/imunologia , Proteínas de Insetos/imunologia , Mariposas/imunologia , beta-Glucanas/imunologia , Animais , Sítios de Ligação , Proteínas de Transporte/química , Glucanos , Imunidade Inata , Proteínas de Insetos/química , Laminaria/imunologia , Modelos Moleculares , Mariposas/química , Mariposas/microbiologia , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/imunologia , Estrutura Terciária de Proteína
3.
J Biol Chem ; 279(46): 47833-9, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15356005

RESUMO

Most types of plant phospholipase D (PLD) require Ca(2+) for activity, but how Ca(2+) affects PLD activity is not well understood. We reported previously that Ca(2+) binds to the regulatory C2 domain that occurs in the N terminus of the Ca(2+)-requiring PLDs. Using Arabidopsis thaliana PLDbeta and C2-deleted PLDbeta (PLDbetacat), we now show that Ca(2+) also interacts with the catalytic regions of PLD. PLDbetacat exhibited Ca(2+)-dependent activity, was much less active, and required a higher level of Ca(2+) than the full-length PLDbeta. Ca(2+) binding of the proteins was stimulated by phospholipids; phosphatidylserine was the most effective among those tested. Scatchard plot analysis of Ca(2+) binding data yielded an estimate of 3.6 high affinity (K(d) = 29 mum) binding sites on PLDbeta. The Ca(2+)-PLDbetacat interaction increased the affinity of the protein for the activator, phosphatidylinositol 4,5-bisphosphate, but not for the substrate, phosphatidylcholine. This is in contrast to the effect of Ca(2+) binding to the C2 domain, which stimulates phosphatidylcholine binding but inhibits phosphatidylinositol 4,5-bisphosphate binding of the domain. These results demonstrate the contrasting and complementary effects of the Ca(2+)- and lipid-binding properties of the C2 and catalytic domains of plant PLD and provide insight into the mechanism by which Ca(2+) regulates PLD activity.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Fosfolipase D/química , Fosfolipase D/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Radioisótopos de Cálcio/metabolismo , Domínio Catalítico , Membrana Celular/química , Membrana Celular/metabolismo , Isoenzimas/genética , Fosfatidilcolinas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase D/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Protein Expr Purif ; 27(1): 143-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12509996

RESUMO

Human blood coagulation factor XII (FXII; 80 kDa) contains a C-terminal serine protease zymogen domain, which becomes activated upon contacting a negative surface. Activated FXII (alphaFXIIa) brings about reciprocal activation of FXII and kallikrein that by further hydrolysis produces the free catalytic domain (betaFXIIa; 28 kDa). Increased levels of alphaFXIIa are associated with coronary heart disease, sepsis, and diabetes. Biophysical investigation of the structural basis of activation, substrate specificity, and regulation of FXII requires an efficient bacterial system for producing the wild-type and mutant recombinant proteins. Here, the cDNA of the zymogen domain of FXII (betaFXII) was cloned into the pET-28a(+) vector and the plasmid was transformed into Escherichia coli strain BL21 (DE3) and overexpressed. The multi-disulfide, recombinant protein, His(6)-betaFXII (rbetaFXII), expressed as an inclusion body, was purified by means of a Ni(2+)-charged resin. The matrix-bound rbetaFXII was subjected to refolding with the glutathione redox system and activated by the in vivo activator, kallikrein. The active form, rbetaFXIIa, obtained in milligram quantities, exhibited similar structural and comparable functional properties relative to human betaFXIIa, as indicated by circular dichroism spectroscopy and kinetics of substrate hydrolysis. Thermodynamics of enzyme:inhibitor complex formation, including the expected 1:1 stoichiometry, was determined for rbetaFXIIa by isothermal calorimetric titration with a specific recombinant protein inhibitor, Cucurbita maxima trypsin inhibitor-V (rCMTI-V; 7kDa).


Assuntos
Domínio Catalítico , Fator XII/química , Fator XII/metabolismo , Expressão Gênica , Dobramento de Proteína , Coagulação Sanguínea , Calorimetria , Dicroísmo Circular , Clonagem Molecular , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Escherichia coli/genética , Fator XII/genética , Fator XII/isolamento & purificação , Humanos , Reação em Cadeia da Polimerase , Ligação Proteica , Renaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Termodinâmica
5.
Biochemistry ; 41(32): 10323-31, 2002 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-12162748

RESUMO

Removal of flap DNA intermediates in DNA replication and repair by flap endonuclease-1 (FEN-1) is essential for mammalian genome integrity. Divalent metal ions, Mg(2+) or Mn(2+), are required for the active center of FEN-1 nucleases. However, it remains unclear as to how Mg(2+) stimulates enzymatic activity. In the present study, we systemically characterize the interaction between Mg(2+) and murine FEN-1 (mFEN-1). We demonstrate that Mg(2+) stimulates mFEN-1 activity at physiological levels but inhibits the activity at concentrations higher than 20 mM. Our data suggest that mFEN-1 exists as a metalloenzyme in physiological conditions and that each enzyme molecule binds two Mg(2+) ions. Binding of Mg(2+) to the M1 binding site coordinated by the D86 residue cluster enhances mFEN-1's capability of substrate binding, while binding of the metal to the M2 binding site coordinated by the D181 residue cluster induces conformational changes. Both of these steps are needed for catalysis. Weak, nonspecific Mg(2+) binding is likely responsible for the enzyme inhibition at high concentrations of the cation. Taken together, our results suggest distinct roles for two Mg(2+) binding sites in the regulation of mFEN-1 nuclease activities in a mode different from the "two-metal mechanism".


Assuntos
Endodesoxirribonucleases/química , Magnésio/química , Substituição de Aminoácidos/genética , Animais , Sítios de Ligação , Cátions Bivalentes/química , DNA/química , Proteínas de Ligação a DNA/química , Relação Dose-Resposta a Droga , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Ativação Enzimática/genética , Endonucleases Flap , Hidrólise , Cinética , Camundongos , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/genética , Termodinâmica , Tripsina/química
6.
Biochemistry ; 41(30): 9572-9, 2002 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12135379

RESUMO

The side chains of Arg(50) and Arg(52) at positions P(6)' and P(8)', respectively, anchor the binding loop to the protein scaffold by means of hydrogen bonds in Cucurbita maxima trypsin inhibitor-V (CMTI-V), a potato I family member. Here, we have investigated the relative contributions of Arg(50) and Arg(52) to the binding-loop flexibility and stability by determining changes in structure, dynamics, and proteolytic stability as a consequence of individually mutating them into an alanine. We have compared chemical shift assignments of main-chain hydrogens and nitrogens, and (1)H-(1)H interresidue nuclear Overhauser effects (NOEs) for the two mutants with those of the wild-type protein. We have also measured NMR longitudinal and transverse relaxation rates and (15)N-(1)H NOE enhancements for all backbone and side-chain NH groups and calculated the model-free parameters for R50A-rCMTI-V and R52A-rCMTI-V. The three-dimensional structures and backbone dynamics of the protein scaffold region remain very similar for both mutants, relative to the wild-type protein. The flexibility of the binding loop is increased in both R50A- and R52A-rCMTI-V. In R52A-rCMTI-V, the mean generalized order parameter () of the P(6)-P(1) residues of the binding loop (39-44) decreases to 0.68 +/- 0.02 from 0.76 +/- 0.04 observed for the wild-type protein. However, in R50A-rCMTI-V, the flexibility of the whole binding loop increases, especially that of the P(1)'-P(3)' residues (45-47), whose value drops dramatically to 0.35 +/- 0.03 from 0.68 +/- 0.03 determined for rCMTI-V. More strikingly, S(2) values of side-chain N epsilon Hs reveal that, in the R50A mutant, removal of the R50 hydrogen bond results in the loss of the R52 hydrogen bond too, whereas in R52A, the R50 hydrogen bond remains unaffected. Kinetic data on trypsin-catalyzed hydrolysis of the reactive-site peptide bond (P(1)-P(1)') suggest that the activation free energy barrier of the reaction at 25 degrees C is reduced by 2.1 kcal/mol for R50A-rCMTI-V and by 1.5 kcal/mol for R52A-rCMTI-V, relative to rCMTI-V. Collectively, the results suggest that although both the P(6') and P(8)' anchors are required for optimal inhibitor function and stability in the potato I family, the former is essential for the existence of the latter and has greater influence on the binding-loop structure, dynamics, and stability.


Assuntos
Arginina/metabolismo , Cucurbita/metabolismo , Inibidores da Tripsina/metabolismo , Catálise , Hidrólise , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Tripsina/metabolismo , Inibidores da Tripsina/química
7.
Biochemistry ; 41(14): 4546-53, 2002 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-11926815

RESUMO

Hydrolysis of phospholipids by plant phospholipase Dbeta (PLDbeta) requires phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here we show that PLDbeta is stimulated by different polyphosphoinositides, among which PI(4,5)P2 is most effective. On the basis of amino acid sequence analysis, PI(4,5)P2 binding assay, and protein engineering studies, we have identified in the catalytic region of PLDbeta a new PI(4,5)P2 binding region (PBR1), which is conserved in eukaryotic PLDs. PBR1 is a second domain besides the previously characterized N-terminal C2 domain of PLDbeta which also binds PI(4,5)P2. Submillimolar levels of calcium ions, while inhibiting PI(4,5)P2 binding by the C2 domain, enhanced the affinity of PBR1 for that phosphoinositide. Substrate binding by PLDbeta was promoted by PI(4,5)P2-bound PBR1. Isolated, recombinant PBR1 bound PI(4,5)P2 specifically and in a saturable manner. Deletion of PBR1 from PLDbeta or mutation of the conserved basic amino acid residues in PBR1 (K437G/K440G) abolished the enzymatic activity. Circular dichroism spectroscopy revealed a conformational change caused by PI(4,5)P2 binding to the catalytic region of PLD. The conformational change apparently helps in the recruitment of the substrate to the active site of the enzyme. The results taken together allow us to describe an anchorage-scooting model for the synergistic activation of PLDbeta by PI(4,5)P2 and Ca2+.


Assuntos
Fosfatidilinositol 4,5-Difosfato/farmacologia , Fosfolipase D/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Dicroísmo Circular , Drosophila melanogaster , Ativação Enzimática , Humanos , Cinética , Camundongos , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/farmacologia , Fosfolipase D/química , Plasmídeos , Conformação Proteica , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA