Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Res Sq ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38883709

RESUMO

Accurate identification of acute coronary syndrome (ACS) in the prehospital sestting is important for timely treatments that reduce damage to the compromised myocardium. Current machine learning approaches lack sufficient performance to safely rule-in or rule-out ACS. Our goal is to identify a method that bridges this gap. To do so, we retrospectively evaluate two promising approaches, an ensemble of gradient boosted decision trees (GBDT) and selective classification (SC) on consecutive patients transported by ambulance to the ED with chest pain and/or anginal equivalents. On the task of ACS classification with 23 prehospital covariates, we found the fusion of the two (GBDT+SC) improves the best reported sensitivity and specificity by 8% and 23% respectively. Accordingly, GBDT+SC is safer than current machine learning approaches to rule-in and rule-out of ACS in the prehospital setting.

2.
Front Public Health ; 12: 1347862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737862

RESUMO

The COVID-19 pandemic has necessitated the development of robust tools for tracking and modeling the spread of the virus. We present 'K-Track-Covid,' an interactive web-based dashboard developed using the R Shiny framework, to offer users an intuitive dashboard for analyzing the geographical and temporal spread of COVID-19 in South Korea. Our dashboard employs dynamic user interface elements, employs validated epidemiological models, and integrates regional data to offer tailored visual displays. The dashboard allows users to customize their data views by selecting specific time frames, geographic regions, and demographic groups. This customization enables the generation of charts and statistical summaries pertinent to both daily fluctuations and cumulative counts of COVID-19 cases, as well as mortality statistics. Additionally, the dashboard offers a simulation model based on mathematical models, enabling users to make predictions under various parameter settings. The dashboard is designed to assist researchers, policymakers, and the public in understanding the spread and impact of COVID-19, thereby facilitating informed decision-making. All data and resources related to this study are publicly available to ensure transparency and facilitate further research.


Assuntos
COVID-19 , Internet , Humanos , República da Coreia/epidemiologia , COVID-19/epidemiologia , SARS-CoV-2 , Interface Usuário-Computador , Pandemias , Modelos Epidemiológicos
3.
J Am Med Inform Assoc ; 30(7): 1293-1300, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192819

RESUMO

Research increasingly relies on interrogating large-scale data resources. The NIH National Heart, Lung, and Blood Institute developed the NHLBI BioData CatalystⓇ (BDC), a community-driven ecosystem where researchers, including bench and clinical scientists, statisticians, and algorithm developers, find, access, share, store, and compute on large-scale datasets. This ecosystem provides secure, cloud-based workspaces, user authentication and authorization, search, tools and workflows, applications, and new innovative features to address community needs, including exploratory data analysis, genomic and imaging tools, tools for reproducibility, and improved interoperability with other NIH data science platforms. BDC offers straightforward access to large-scale datasets and computational resources that support precision medicine for heart, lung, blood, and sleep conditions, leveraging separately developed and managed platforms to maximize flexibility based on researcher needs, expertise, and backgrounds. Through the NHLBI BioData Catalyst Fellows Program, BDC facilitates scientific discoveries and technological advances. BDC also facilitated accelerated research on the coronavirus disease-2019 (COVID-19) pandemic.


Assuntos
COVID-19 , Computação em Nuvem , Humanos , Ecossistema , Reprodutibilidade dos Testes , Pulmão , Software
4.
Health Informatics J ; 29(2): 14604582231170892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066514

RESUMO

The Integrated Clinical and Environmental Exposures Service (ICEES) provides open regulatory-compliant access to clinical data, including electronic health record data, that have been integrated with environmental exposures data. While ICEES has been validated in the context of an asthma use case and several other use cases, the regulatory constraints on the ICEES open application programming interface (OpenAPI) result in data loss when using the service for multivariate analysis. In this study, we investigated the robustness of the ICEES OpenAPI through a comparative analysis, in which we applied a generalized linear model (GLM) to the OpenAPI data and the constraint-free source data to examine factors predictive of asthma exacerbations. Consistent with previous studies, we found that the main predictors identified by both analyses were sex, prednisone, race, obesity, and airborne particulate exposure. Comparison of GLM model fit revealed that data loss impacts model quality, but only with select interaction terms. We conclude that the ICEES OpenAPI supports multivariate analysis, albeit with potential data loss that users should be aware of.


Assuntos
Asma , Registros Eletrônicos de Saúde , Humanos , Modelos Lineares , Exposição Ambiental , Software , Asma/epidemiologia
5.
J Am Med Inform Assoc ; 30(3): 447-455, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36451264

RESUMO

OBJECTIVE: This article describes the implementation of a privacy-preserving record linkage (PPRL) solution across PCORnet®, the National Patient-Centered Clinical Research Network. MATERIAL AND METHODS: Using a PPRL solution from Datavant, we quantified the degree of patient overlap across the network and report a de-duplicated analysis of the demographic and clinical characteristics of the PCORnet population. RESULTS: There were ∼170M patient records across the responding Network Partners, with ∼138M (81%) of those corresponding to a unique patient. 82.1% of patients were found in a single partner and 14.7% were in 2. The percentage overlap between Partners ranged between 0% and 80% with a median of 0%. Linking patients' electronic health records with claims increased disease prevalence in every clinical characteristic, ranging between 63% and 173%. DISCUSSION: The overlap between Partners was variable and depended on timeframe. However, patient data linkage changed the prevalence profile of the PCORnet patient population. CONCLUSIONS: This project was one of the largest linkage efforts of its kind and demonstrates the potential value of record linkage. Linkage between Partners may be most useful in cases where there is geographic proximity between Partners, an expectation that potential linkage Partners will be able to fill gaps in data, or a longer study timeframe.


Assuntos
Confidencialidade , Privacidade , Humanos , Registro Médico Coordenado , Segurança Computacional , Registros Eletrônicos de Saúde , Assistência Centrada no Paciente , Demografia
6.
BMC Res Notes ; 15(1): 337, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316778

RESUMO

OBJECTIVE: The aim of this study was to determine whether a secure, privacy-preserving record linkage (PPRL) methodology can be implemented in a scalable manner for use in a large national clinical research network. RESULTS: We established the governance and technical capacity to support the use of PPRL across the National Patient-Centered Clinical Research Network (PCORnet®). As a pilot, four sites used the Datavant software to transform patient personally identifiable information (PII) into de-identified tokens. We queried the sites for patients with a clinical encounter in 2018 or 2019 and matched their tokens to determine whether overlap existed. We described patient overlap among the sites and generated a "deduplicated" table of patient demographic characteristics. Overlapping patients were found in 3 of the 6 site-pairs. Following deduplication, the total patient count was 3,108,515 (0.11% reduction), with the largest reduction in count for patients with an "Other/Missing" value for Sex; from 198 to 163 (17.6% reduction). The PPRL solution successfully links patients across data sources using distributed queries without directly accessing patient PII. The overlap queries and analysis performed in this pilot is being replicated across the full network to provide additional insight into patient linkages among a distributed research network.


Assuntos
Registros Eletrônicos de Saúde , Privacidade , Humanos , Registro Médico Coordenado/métodos , Bases de Dados Factuais , Assistência Centrada no Paciente
7.
Front Artif Intell ; 5: 918888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837616

RESUMO

Research on rare diseases has received increasing attention, in part due to the realized profitability of orphan drugs. Biomedical informatics holds promise in accelerating translational research on rare disease, yet challenges remain, including the lack of diagnostic codes for rare diseases and privacy concerns that prevent research access to electronic health records when few patients exist. The Integrated Clinical and Environmental Exposures Service (ICEES) provides regulatory-compliant open access to electronic health record data that have been integrated with environmental exposures data, as well as analytic tools to explore the integrated data. We describe a proof-of-concept application of ICEES to examine demographics, clinical characteristics, environmental exposures, and health outcomes among a cohort of patients enriched for phenotypes associated with cystic fibrosis (CF), idiopathic bronchiectasis (IB), and primary ciliary dyskinesia (PCD). We then focus on a subset of patients with CF, leveraging the availability of a diagnostic code for CF and serving as a benchmark for our development work. We use ICEES to examine select demographics, co-diagnoses, and environmental exposures that may contribute to poor health outcomes among patients with CF, defined as emergency department or inpatient visits for respiratory issues. We replicate current understanding of the pathogenesis and clinical manifestations of CF by identifying co-diagnoses of asthma, chronic nasal congestion, cough, middle ear disease, and pneumonia as factors that differentiate patients with poor health outcomes from those with better health outcomes. We conclude by discussing our preliminary findings in relation to other published work, the strengths and limitations of our approach, and our future directions.

8.
Bioinformatics ; 38(12): 3252-3258, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35441678

RESUMO

MOTIVATION: As the number of public data resources continues to proliferate, identifying relevant datasets across heterogenous repositories is becoming critical to answering scientific questions. To help researchers navigate this data landscape, we developed Dug: a semantic search tool for biomedical datasets utilizing evidence-based relationships from curated knowledge graphs to find relevant datasets and explain why those results are returned. RESULTS: Developed through the National Heart, Lung and Blood Institute's (NHLBI) BioData Catalyst ecosystem, Dug has indexed more than 15 911 study variables from public datasets. On a manually curated search dataset, Dug's total recall (total relevant results/total results) of 0.79 outperformed default Elasticsearch's total recall of 0.76. When using synonyms or related concepts as search queries, Dug (0.36) far outperformed Elasticsearch (0.14) in terms of total recall with no significant loss in the precision of its top results. AVAILABILITY AND IMPLEMENTATION: Dug is freely available at https://github.com/helxplatform/dug. An example Dug deployment is also available for use at https://search.biodatacatalyst.renci.org/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ferramenta de Busca , Semântica , Ecossistema , Indexação e Redação de Resumos
9.
IEEE/ACM Trans Comput Biol Bioinform ; 19(4): 1920-1932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34133284

RESUMO

Image-based cell counting is a fundamental yet challenging task with wide applications in biological research. In this paper, we propose a novel unified deep network framework designed to solve this problem for various cell types in both 2D and 3D images. Specifically, we first propose SAU-Net for cell counting by extending the segmentation network U-Net with a Self-Attention module. Second, we design an extension of Batch Normalization (BN) to facilitate the training process for small datasets. In addition, a new 3D benchmark dataset based on the existing mouse blastocyst (MBC) dataset is developed and released to the community. Our SAU-Net achieves state-of-the-art results on four benchmark 2D datasets - synthetic fluorescence microscopy (VGG) dataset, Modified Bone Marrow (MBM) dataset, human subcutaneous adipose tissue (ADI) dataset, and Dublin Cell Counting (DCC) dataset, and the new 3D dataset, MBC. The BN extension is validated using extensive experiments on the 2D datasets, since GPU memory constraints preclude use of 3D datasets. The source code is available at https://github.com/mzlr/sau-net.


Assuntos
Imageamento Tridimensional , Microscopia , Animais , Atenção , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos
10.
IEEE J Biomed Health Inform ; 26(2): 572-580, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34288883

RESUMO

This paper proposes a novel deep learning architecture involving combinations of Convolutional Neural Networks (CNN) layers and Recurrent neural networks (RNN) layers that can be used to perform segmentation and classification of 5 cardiac rhythms based on ECG recordings. The algorithm is developed in a sequence to sequence setting where the input is a sequence of five second ECG signal sliding windows and the output is a sequence of cardiac rhythm labels. The novel architecture processes as input both the spectrograms of the ECG signal as well as the heartbeats' signal waveform. Additionally, we are able to train the model in the presence of label noise. The model's performance and generalizability is verified on an external database different from the one we used to train. Experimental result shows this approach can achieve an average F1 scores of 0.89 (averaged across 5 classes). The proposed model also achieves comparable classification performance to existing state-of-the-art approach with considerably less number of training parameters.


Assuntos
Arritmias Cardíacas , Eletrocardiografia , Algoritmos , Arritmias Cardíacas/diagnóstico por imagem , Frequência Cardíaca , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA