Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Med Imaging ; 20: 1-9, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389364

RESUMO

BACKGROUND: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a genetic disorder that causes uncontrolled kidney cyst growth, leading to kidney volume enlargement and renal function loss over time. Total kidney volume (TKV) and cyst burdens have been used as prognostic imaging biomarkers for ADPKD. OBJECTIVE: This study aimed to evaluate nnUNet for automatic kidney and cyst segmentation in T2-weighted (T2W) MRI images of ADPKD patients. METHODS: 756 kidney images were retrieved from 95 patients in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) cohort (95 patients × 2 kidneys × 4 follow-up scans). The nnUNet model was trained, validated, and tested on 604, 76, and 76 images, respectively. In contrast, all images of each patient were exclusively assigned to either the training, validation, or test sets to minimize evaluation bias. The kidney and cyst regions defined using a semi-automatic method were employed as ground truth. The model performance was assessed using the Dice Similarity Coefficient (DSC), the intersection over union (IoU) score, and the Hausdorff distance (HD). RESULTS: The test DSC values were 0.96±0.01 (mean±SD) and 0.90±0.05 for kidney and cysts, respectively. Similarly, the IoU scores were 0.91± 0.09 and 0.81±0.06, and the HD values were 12.49±8.71 mm and 12.04±10.41 mm, respectively, for kidney and cyst segmentation. CONCLUSION: The nnUNet model is a reliable tool to automatically determine kidney and cyst volumes in T2W MRI images for ADPKD prognosis and therapy monitoring.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim/diagnóstico por imagem
2.
Clin Imaging ; 106: 110068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101228

RESUMO

PURPOSE: This study aimed to investigate if a deep learning model trained with a single institution's data has comparable accuracy to that trained with multi-institutional data for segmenting kidney and cyst regions in magnetic resonance (MR) images of patients affected by autosomal dominant polycystic kidney disease (ADPKD). METHODS: We used TensorFlow with a Keras custom UNet on 2D slices of 756 MRI images of kidneys with ADPKD obtained from four institutions in the Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease (CRISP) study. The ground truth was determined via a manual plus global thresholding method. Five models were trained with 80 % of all institutional data (n = 604) and each institutional data (n = 232, 172, 148, or 52), respectively, and validated with 10 % and tested on an unseen 10 % of the data. The model's performance was evaluated using the Dice Similarity Coefficient (DSC). RESULTS: The DSCs by the model trained with all institutional data ranged from 0.92 to 0.95 for kidney image segmentation, only 1-2 % higher than those by the models trained with single institutional data (0.90-0.93).In cyst segmentation, however, the DSCs by the model trained with all institutional data ranged from 0.83 to 0.89, which were 2-20 % higher than those by the models trained with single institutional data (0.66-0.86). CONCLUSION: The UNet performance, when trained with a single institutional dataset, exhibited similar accuracy to the model trained on a multi-institutional dataset. Segmentation accuracy increases with models trained on larger sample sizes, especially in more complex cyst segmentation.


Assuntos
Cistos , Aprendizado Profundo , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/patologia , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Cistos/patologia , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA