Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794537

RESUMO

Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment.

2.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612782

RESUMO

The synthesis and structural characterization of α-haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles with various counterions is reported herein, demonstrating a strategy for directed supramolecular dimerization in the solid state. The compounds were obtained through a recently discovered 1,3-dipolar cycloaddition reaction between nitriles and bifunctional 2-pyridylselenyl reagents, and their structures were confirmed by the X-ray crystallography. α-Haloalkyl-substituted pyridinium-fused 1,2,4-selenadiazoles exclusively formed supramolecular dimers via four-center Se···N chalcogen bonding, supported by additional halogen bonding involving α-haloalkyl substituents. The introduction of halogens at the α-position of the substituent R in the selenadiazole core proved effective in promoting supramolecular dimerization, which was unaffected by variation of counterions. Additionally, the impact of cocrystallization with a classical halogen bond donor C6F3I3 on the supramolecular assembly was investigated. Non-covalent interactions were studied using density functional theory calculations and topological analysis of the electron density distribution, which indicated that all ChB, XB and HB interactions are purely non-covalent and attractive in nature. This study underscores the potential of halogen and chalcogen bonding in directing the self-assembly of functional supramolecular materials employing 1,2,4-selenadiazoles derived from recently discovered cycloaddition between nitriles and bifunctional 2-pyridylselenyl reagents.


Assuntos
Calcogênios , Halogênios , Dimerização , Reagentes de Ligações Cruzadas , Nitrilas
3.
Polymers (Basel) ; 16(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543362

RESUMO

In this study, Rhodamine B-containing chitosan-based films were prepared and characterized using their mechanical, photophysical, and antibacterial properties. The films were synthesized using the casting method and their mechanical properties, such as tensile strength and elongation at break, were found to be dependent on the chemical composition and drying process. Infrared spectroscopy and X-ray diffraction analysis were used to examine the chemical structure and degree of structural perfection of the films. The photophysical properties of the films, including absorption spectra, fluorescence detection, emission quantum yields, and lifetimes of excited states, were studied in detail. Rhodamine B-containing films exhibited higher temperature sensitivity and showed potential as fluorescent temperature sensors in the physiological range. The antibacterial activity of the films was tested against Gram-positive bacteria S. aureus and Gram-negative bacteria E. coli, with Rhodamine B-containing films demonstrating more pronounced antibacterial activity compared to blank films. The findings suggest that the elaborated chitosan-based films, particularly those containing Rhodamine B can be of interest for further research regarding their application in various fields such as clinical practice, the food industry, and agriculture due to their mechanical, photophysical, and antibacterial properties.

4.
J Trace Elem Med Biol ; 80: 127303, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741050

RESUMO

BACKGROUND: This study explores the regional variations in toxic metal accumulation among RUDN University students from various global regions. METHODS: This comparative analysis examined hair samples from students hailing from different regions, including Russia, Asia, the Middle East, Africa, and Latin America. The concentrations of Aluminium (Al), Arsenic (As), Cadmium (Cd), Mercury (Hg), Lead (Pb), and Tin (Sn) were measured in the hair samples. The data was then evaluated using regression models to assess the link between the region of residence and toxic metal content in the hair. RESULTS: The analysis indicated significant regional variations in the levels of toxic metals in the students' hair. The highest content of Al, Cd, and Pb was observed in students from Africa (13.542, 0.028, 0.794 µg/g) and Latin America (9.947, 0.025, 0.435 µg/g). Arsenic levels in students from all regions exceeded that of Russian students by over two-fold. No substantial group differences were found in the Sn content. The regression models suggested that residing in Asia, Africa, and Latin America was a predictor of high Hg levels in hair (0.130, 0.096, 0.227 µg/g). Living in Africa was significantly associated with higher Pb levels (0.794 µg/g), and living in Latin America was close to significantly associated with the Cd level in the hair (0.025 µg/g). CONCLUSION: This study confirmed an increased accumulation of toxic metals, especially Hg, Cd, and Pb, in students primarily from Latin America and Africa. The findings highlighted the importance of understanding the regional variations in toxic metal accumulation to address associated health risks and the potential impact on students' well-being and academic performance. These insights may guide the development of targeted interventions to reduce exposure to toxic metals in students from various regions around the world.


Assuntos
Arsênio , Mercúrio , Humanos , Arsênio/análise , Cádmio/análise , Universidades , Chumbo , Mercúrio/análise , Estudantes , Cabelo/química , Alumínio/análise
5.
Materials (Basel) ; 16(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37763353

RESUMO

This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.

6.
Polymers (Basel) ; 15(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631525

RESUMO

In this work, we focused on synthesizing and assessing novel chitosan-based antibacterial polymers and their nanoparticles by incorporating benzothiazole substituents. The growing resistance to antibiotics has necessitated the search for alternative antimicrobial compounds. This study aimed to synthesize and evaluate chitosan-based polymers and nanoparticles with benzothiazole substituents for their antibacterial properties and toxicity. The benzothiazole derivatives of chitosan and their nanoparticles were synthesized through electrochemical coupling. The in vivo antibacterial efficacy was tested on white rats with induced peritonitis using a microbial suspension containing S. aureus and E. coli. Additionally, in vitro and in vivo toxicity assessments were conducted. The chitosan-based antibacterial systems showed significant in vivo antibacterial activity, surpassing that of unmodified chitosan and commercial antibiotics. Moreover, the toxicity studies revealed low toxicity levels of the synthesized derivatives, which did not differ significantly from native chitosan. The synthesized chitosan-based polymers and nanoparticles demonstrated potent antibacterial activity and low toxicity, highlighting their potential as effective alternatives to traditional antibiotics. Further investigations in pharmacology and preclinical trials are recommended to explore their application in clinical settings.

7.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445916

RESUMO

Antibacterial chitosan films, versatile and eco-friendly materials, have garnered significant attention in both the food industry and medicine due to their unique properties, including biodegradability, biocompatibility, and antimicrobial activity. This review delves into the various types of chitosan films and their distinct applications. The categories of films discussed span from pure chitosan films to those enhanced with additives such as metal nanoparticles, metal oxide nanoparticles, graphene, fullerene and its derivatives, and plant extracts. Each type of film is examined in terms of its synthesis methods and unique properties, establishing a clear understanding of its potential utility. In the food industry, these films have shown promise in extending shelf life and maintaining food quality. In the medical field, they have been utilized for wound dressings, drug delivery systems, and as antibacterial coatings for medical devices. The review further suggests that the incorporation of different additives can significantly enhance the antibacterial properties of chitosan films. While the potential of antibacterial chitosan films is vast, the review underscores the need for future research focused on optimizing synthesis methods, understanding structure-property relationships, and rigorous evaluation of safety, biocompatibility, and long-term stability in real-world applications.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/farmacologia , Antibacterianos/farmacologia , Óxidos , Filmes Cinematográficos , Embalagem de Alimentos/métodos
8.
BioTech (Basel) ; 12(3)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489484

RESUMO

In this study, we elaborated new chitosan-based films reinforced by iron(III)-containing chitosan nanoparticles Fe(III)-CS-NPs at different concentrations. We found that the optimum concentration of Fe(III)-CS-NPs for the improvement of antibacterial and mechanical properties of the films was 10% (σb = ca. 8.8 N/mm2, εb = ca. 41%, inhibition zone for S. aureus = ca. 16.8 mm and for E. coli = ca. 11.2 mm). Also, using the click-chemistry approach (thiol-ene reaction), we have synthesized a novel water-soluble cationic derivative of chitin. The addition of this derivative of chitin to the chitosan polymer matrix of the elaborated film significantly improved its mechanical (σb = ca. 11.6 N/mm2, εb = ca. 75%) and antimicrobial (inhibition zone for S. aureus = ca. 19.6 mm and for E. coli = ca. 14.2 mm) properties. The key mechanism of the antibacterial action of the obtained films is the disruption of the membranes of bacterial cells. The elaborated antibacterial films are of interest for potential biomedical and food applications.

9.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771079

RESUMO

Microorganisms, fermentation processes, and the resultant metabolic products are a key driving force in biotechnology and, in particular, in food biotechnology. The quantity and/or quality of final manufactured food products are directly related to the efficiency of the metabolic processes of producer microorganisms. Food BioTech companies are naturally interested in increasing the productivity of their biotechnological production lines. This could be achieved via either indirect or direct influence on the fundamental mechanisms governing biological processes occurring in microbial cells. This review considers an approach to improve the efficiency of producer microorganisms through the use of several types of substances or complexes affecting the metabolic processes of microbial producers that are of interest for food biotechnology, particularly fermented milk products. A classification of these supplements will be given, depending on their chemical nature (poly- and oligosaccharides; poly- and oligopeptides, individual amino acids; miscellaneous substances, including vitamins and other organic compounds, minerals, and multicomponent supplements), and the approved results of their application will be comprehensively surveyed.


Assuntos
Biotecnologia , Vitaminas , Suplementos Nutricionais , Fermentação , Vitamina A
10.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499302

RESUMO

The series of benzylic-substituted 1,2,4-selenodiazolium salts were prepared via cyclization reaction between 2-pyridylselenyl chlorides and nitriles and fully characterized. Substitution of the Cl anion by weakly binding anions promoted the formation supramolecular dimers featuring four center Se2N2 chalcogen bonding and two antiparallel selenium⋯π interactions. Chalcogen bonding interactions were studied using density functional theory calculations, molecular electrostatic potential (MEP) surfaces, the quantum theory of atoms-in-molecules (QTAIM), and the noncovalent interaction (NCI) plot. The investigations revealed fundamental role of the selenium⋯π contacts that are stronger than the Se⋯N interactions in supramolecular dimers. Importantly, described herein, the benzylic substitution approach can be utilized for reliable supramolecular dimerization of selenodiazolium cations in the solid state, which can be employed in supramolecular engineering.


Assuntos
Teoria Quântica , Sais , Ligação de Hidrogênio , Eletricidade Estática , Ânions/química , Polímeros
11.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557998

RESUMO

Ciprofloxacin is one of the most effective antibiotics, but it is characterized by a range of side effects. Elaboration of drug-releasing systems which allow to diminish toxicity of ciprofloxacin is a challenging task in medicinal chemistry. The current study is focused on development of new ciprofloxacin releasing systems (CRS). We found that ultrasound efficiently promotes N,N'-dicyclohexyl carbodiimide-mediated coupling between COOH and NH2 functionalities in water. This was used for conjugation of ciprofloxacin to chitosan. The obtained ciprofloxacin/chitosan conjugates are capable of forming their self-assembled nanoparticles (SANPs) in aqueous medium. The SANPs can be additionally loaded by ciprofloxacin to form new CRS. The CRS demonstrated high loading and encapsulation efficiency and they are characterized by extended release profile (20 h). The elaborated CRS were tested in vivo in rats. The in vivo antibacterial effect of the CRS exceeded that of the starting ciprofloxacin. Moreover, the in vivo acute and subacute toxicity of the nanoparticles was almost identical to that of the chitosan, which is considered as the non-toxic biopolymer.


Assuntos
Quitosana , Nanopartículas , Ratos , Animais , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Quitosana/farmacologia , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Liberação Controlada de Fármacos , Química Farmacêutica , Nanopartículas/química
12.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144534

RESUMO

A practical method for the synthesis of 2-selenoxo-1,2,3,4-tetrahydro-4-quinazolinone was reported. The latter compounds were found to undergo facile oxidation with H2O2 into corresponding diselenides. Novel organoselenium derivatives were characterized by the 1H, 77Se, and 13C NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, IR, elemental analyses (C, H, N), and X-ray diffraction analysis for several of them. Novel heterocycles exhibited multiple remarkable chalcogen bonding (ChB) interactions in the solid state, which were studied theoretically.


Assuntos
Calcogênios , Peróxido de Hidrogênio , Ciclização , Compostos Organosselênicos , Quinazolinonas , ortoaminobenzoatos
13.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742815

RESUMO

The synthesis and structural characterization of a series of supramolecular complexes of bicyclic cationic pyridine-fused 1,2,4-selenodiazoles with various anions is reported. The binding of trifluoroacetate, tetrachloroaurate, tetraphenylborate, perrhenate, and pertechnetate anions in the solid state is regarded. All the anions interact with selenodiazolium cations exclusively via a pair of "chelating" Se⋯O and H⋯O non-covalent interactions, which make them an attractive, novel, non-classical supramolecular recognition unit or a synthon. Trifluoroacetate salts were conveniently generated via novel oxidation reaction of 2,2'-dipyridyl diselenide with bis(trifluoroacetoxy)iodo)benzene in the presence of corresponding nitriles. Isolation and structural characterization of transient 2-pyridylselenyl trifluoroacetate was achieved. X-ray analysis has demonstrated that the latter forms dimers in the solid state featuring very short and strong Se⋯O and Se⋯N ChB contacts. 1,2,4-Selenodiazolium trifluoroacetates or halides show good solubility in water. In contrast, (AuCl4)-, (ReO4)-, or (TcO4)- derivatives immediately precipitate from aqueous solutions. Structural features of these supramolecular complexes in the solid state are discussed. The nature and energies of the non-covalent interactions in novel assembles were studied by the theoretical methods. To the best of our knowledge, this is the first study that regards perrhenate and pertechnetate as acceptors in ChB interactions. The results presented here will be useful for further developments in anion recognition and precipitation involving cationic 1,2,4-selenodiazoles.


Assuntos
Sais , Água , Ânions/química , Cátions , Modelos Teóricos , Pertecnetato Tc 99m de Sódio , Ácido Trifluoracético
14.
Int J Biol Macromol ; 209(Pt B): 2175-2187, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513092

RESUMO

Ultrasonic approach to the synthesis of the first selenium-containing derivatives of chitin and chitosan has been developed. The synthetic procedure is simple, provides high yields, does not require harsh conditions, and uses water as the reaction medium. The elaborated chitin and chitosan derivatives and their based nanoparticles are non-toxic and possess high antibacterial and antifungal activity. Their antimicrobial activity exceeds the effect of the classic antibiotics (Ampicillin and Gentamicin) and the antifungal drug Amphotericin B. The obtained selenium-containing cationic chitin and chitosan derivatives exhibit a high transfection activity and are promising gene delivery vectors. Nanoparticles of the synthesized polymers are highly efficient catalysts for the oxidation of 1-phenylethyl alcohol to acetophenone by bromine at room temperature.


Assuntos
Quitosana , Selênio , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Catálise , Quitina
15.
Molecules ; 27(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35164294

RESUMO

Chalcogenodiazoles have been intensively studied in recent years in the context of their supramolecular chemistry. In contrast, the newly discovered cationic 1,2,4-selenodiazole supramolecular building blocks, which can be obtained via coupling between 2-pyridylselenyl halides and nitriles, are virtually unexplored. A significant advantage of the latter is their facile structural tunability via the variation of nitriles, which could allow a fine tuning of their self-assembly in the solid state. Here, we explore the influence of the substituent (which derives from the nitrile) and counterions on the supramolecular assembly of cationic 1,2,4-selenodiazoles via chalcogen bonding.

16.
Molecules ; 26(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804616

RESUMO

Arylazoimidazoles are important dyes which were intensively studied in the past. In contrast, triarylazoimidazoles (derivatives which carry aryl substituents at the imidazole core) received almost no attention in the scientific literature. Here, we report a new family of simple and easily accessible triarylazoimidazole-group 12 metal complexes, which feature highly efficient photo-luminescence emission (Φ up to 0.44). Novel compounds exhibit bright red emission in solution, which could be excited with a visible light.

17.
Carbohydr Polym ; 257: 117593, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541634

RESUMO

In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.


Assuntos
Antibacterianos/química , Quitosana/síntese química , Quitosana/farmacologia , Óxido de Etileno/química , Nanopartículas/química , Triazóis/química , Aldeídos/química , Ampicilina/química , Exoesqueleto , Animais , Anti-Infecciosos , Catálise , Química Click , Ésteres , Gentamicinas/química , Química Verde , Íons , Espectroscopia de Ressonância Magnética , Solubilidade , Solventes , Viscosidade
18.
Food Chem ; 343: 128676, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33250292

RESUMO

We used nanoparticles which possess simultaneously active (antimicrobial, UV-protective and antioxidant) and smart (temperature sensing) properties. The nanoparticles (2Rh = 450 nm, PDI = 0.118 ± 0.014, ζ-potential = 21 mV and Tg = 8 ± 1 °C) are based on polyethylene glycol (PEG)/methyl cellulose (MC) core with anthocyanidin and sodium acetate, and chitosan/gallotannin-based shell. The core of nanoparticles acts as a temperature indicator, changing its color from colorless into deep purple at 8 °C, while the shell provides antimicrobial (due to chitosan), UV-protective and antioxidant (due to gallotannin) effects. We incorporated these nanoparticles into the chitosan matrix. The coatings demonstrated improved mechanical and barrier properties compared with the pure chitosan coating. The elaborated coatings pronouncedly improve the shelf-life of Ricotta cheese. Moreover, they serve as thermo indicators, which warn about cheese storage at an unacceptable temperature. Thus, we developed new coatings in which all properties are enabled by a single type of nanoparticles.


Assuntos
Anti-Infecciosos/química , Quitosana/química , Embalagem de Alimentos/métodos , Nanopartículas/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Queijo/análise , Escherichia coli/efeitos dos fármacos , Fungos/efeitos dos fármacos , Taninos Hidrolisáveis/química , Metilcelulose/química , Nanopartículas/toxicidade , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos , Temperatura , Resistência à Tração
19.
Food Chem ; 343: 128696, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248843

RESUMO

The synthesis of new chitin derivatives through ultrasound-assisted treatment of the chitin with 1-azido-3-chloropropan-2-ol under Green Chemistry conditions is described. This is the first example of ultrasound-assisted polymer analogues transformation of chitin unaccompanied by noticeable backbone degradation or deacetylation. The obtained water-soluble azido chitin derivatives are characterized by high antibacterial activity, which is comparable with that of commercial antibiotics ampicillin and gentamicin. At the same time, they were demonstrated almost identical in vitro toxicity as unmodified chitin and chitosan. The antibacterial activity of the obtained polymers is mainly provided by azido moiety in their macromolecules. The conjugation of azido moiety to chitin backbone strongly diminishes the toxicity of the azido pharmacophore, but preserves its antibacterial properties. The most potent chitin derivative was used for the film coating of Ricotta cheese samples. This food coating proved to be efficient for the prolongation of shelf life of Ricotta cheese.


Assuntos
Antibacterianos/química , Quitosana/química , Manipulação de Alimentos/métodos , Antibacterianos/farmacologia , Queijo/análise , Quitosana/farmacologia , Cromatografia em Camada Fina , Armazenamento de Alimentos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Sonicação
20.
Carbohydr Polym ; 252: 117167, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183618

RESUMO

For the first time the possibility of chitin use as an accessible and easily-modifiable support for an efficient Pd(II) catalyst has been demonstrated. The modification of chitin avoiding a noticeable chain scission or deacetylation, is achieved by sonochemical alkylation with 1-azido-3-chloropropan-2-ol followed by a convenient azido-alkyne click reaction. The obtained polymer represents an extremely rare case of the chitin derivative soluble both in water and organic solvents. The treatment of that derivative with imino-isonitrile Pd(II) complex solution yielded a chitin-supported Pd(II) complex. The latter could be obtained as a powder or as uniform nanoparticles in different size ranges. The nanoparticles with a hydrodynamic diameter of 30 nm were shown to be the most efficient form of catalyst for the copper- and phosphine-free Sonogashira cross-coupling in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA