Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8045, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052817

RESUMO

Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Metilação , Provírus , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Oxirredução
2.
Proc Natl Acad Sci U S A ; 120(48): e2314043120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991942

RESUMO

Hydrogen peroxide (H2O2) sensing and signaling involves the reversible oxidation of particular thiols on particular proteins to modulate protein function in a dynamic manner. H2O2 can be generated from various intracellular sources, but their identities and relative contributions are often unknown. To identify endogenous "hotspots" of H2O2 generation on the scale of individual proteins and protein complexes, we generated a yeast library in which the H2O2 sensor HyPer7 was fused to the C-terminus of all protein-coding open reading frames (ORFs). We also generated a control library in which a redox-insensitive mutant of HyPer7 (SypHer7) was fused to all ORFs. Both libraries were screened side-by-side to identify proteins located within H2O2-generating environments. Screening under a variety of different metabolic conditions revealed dynamic changes in H2O2 availability highly specific to individual proteins and protein complexes. These findings suggest that intracellular H2O2 generation is much more localized and functionally differentiated than previously recognized.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Proteoma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Oxirredução
3.
Free Radic Biol Med ; 209(Pt 2): 355-365, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37923089

RESUMO

Skeletal muscle is crucial for maintaining human health and overall quality of life. Acute exercise introduces a multifaceted intracellular stress, with numerous post-translational modifications believed to underpin the health benefits of sustained exercise training. Reactive oxygen species (ROS) are posited to serve as second messengers, triggering cytoprotective adaptations such as the upregulation of enzymatic scavenger systems. However, a significant knowledge gap exists between the generation of oxidants in muscle and the exact mechanisms driving muscle adaptations. This review delves into the current research on subcellular redox biochemistry and its role in the physiological adaptations to exercise. We propose that the subcellular regulation of specific redox modifications is key to ensuring specificity in the intracellular response.


Assuntos
Músculo Esquelético , Qualidade de Vida , Humanos , Oxirredução , Oxidantes , Adaptação Fisiológica
4.
Nucleic Acids Res ; 51(16): 8820-8835, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37449412

RESUMO

Translation initiation factor 4G (eIF4G) is an integral component of the eIF4F complex which is key to translation initiation for most eukaryotic mRNAs. Many eIF4G isoforms have been described in diverse eukaryotic organisms but we currently have a poor understanding of their functional roles and whether they regulate translation in an mRNA specific manner. The yeast Saccharomyces cerevisiae expresses two eIF4G isoforms, eIF4G1 and eIF4G2, that have previously been considered as functionally redundant with any phenotypic differences arising due to alteration in eIF4G expression levels. Using homogenic strains that express eIF4G1 or eIF4G2 as the sole eIF4G isoforms at comparable expression levels to total eIF4G, we show that eIF4G1 is specifically required to mediate the translational response to oxidative stress. eIF4G1 binds the mRNA cap and remains associated with actively translating ribosomes during oxidative stress conditions and we use quantitative proteomics to show that eIF4G1 promotes oxidative stress-specific proteome changes. eIF4G1, but not eIF4G2, binds the Slf1 LARP protein which appears to mediate the eIF4G1-dependent translational response to oxidative stress. We show similar isoform specific roles for eIF4G in human cells suggesting convergent evolution of multiple eIF4G isoforms offers significant advantages especially where translation must continue under stress conditions.


Assuntos
Fator de Iniciação Eucariótico 4G , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas , Proteínas de Transporte/genética , Isoformas de Proteínas/metabolismo , Estresse Oxidativo/genética
5.
Antioxidants (Basel) ; 12(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36829961

RESUMO

Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases.

7.
J Biol Chem ; 297(1): 100866, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118234

RESUMO

Genetically encoded fluorescent H2O2 probes continue to advance the field of redox biology. Here, we compare the previously established peroxiredoxin-based H2O2 probe roGFP2-Tsa2ΔCR with the newly described OxyR-based H2O2 probe HyPer7, using yeast as the model system. Although not as sensitive as roGFP2-Tsa2ΔCR, HyPer7 is much improved relative to earlier HyPer versions, most notably by ratiometric pH stability. The most striking difference between the two probes is the dynamics of intracellular probe reduction. HyPer7 is rapidly reduced, predominantly by the thioredoxin system, whereas roGFP2-Tsa2ΔCR is reduced more slowly, predominantly by the glutathione system. We discuss the pros and cons of each probe and suggest that future side-by-side measurements with both probes may provide information on the relative activity of the two major cellular reducing systems.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrogênio/análise , Peroxirredoxinas/metabolismo , Proteínas Repressoras/metabolismo , Técnicas Biossensoriais/normas , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Biol Chem ; 296: 100690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33894203

RESUMO

Protein aggregation is the abnormal association of misfolded proteins into larger, often insoluble structures that can be toxic during aging and in protein aggregation-associated diseases. Previous research has established a role for the cytosolic Tsa1 peroxiredoxin in responding to protein misfolding stress. Tsa1 is also known to downregulate the cAMP/protein kinase A (PKA) pathway as part of the response to hydrogen peroxide stress. However, whether the cAMP/PKA pathway is involved in protein misfolding stress is not known. Using transcriptomics, we examined the response to protein misfolding stress and found upregulation of numerous stress gene functions and downregulation of many genes related to protein synthesis and other growth-related processes consistent with the well-characterized environmental stress response. The scope of the transcriptional response is largely similar in wild-type and tsa1 mutant strains, but the magnitude is dampened in the strain lacking Tsa1. We identified a direct protein interaction between Tsa1 and the Bcy1 regulatory subunit of PKA that is present under normal growth conditions and explains the observed differences in gene expression profiles. This interaction is increased in a redox-dependent manner in response to nascent protein misfolding, via Tsa1-mediated oxidation of Bcy1. Oxidation of Bcy1 causes a reduction in cAMP binding by Bcy1, which dampens PKA pathway activity, leading to a targeted reprogramming of gene expression. Redox regulation of the regulatory subunit of PKA provides a mechanism to mitigate the toxic consequences of protein misfolding stress that is distinct to stress caused by exogenous sources of reactive oxygen species.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Dobramento de Proteína , Estresse Fisiológico , Perfilação da Expressão Gênica , Mutação , Agregados Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia
9.
Cell Death Differ ; 27(5): 1744, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31641239

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
J Biol Chem ; 293(31): 11984-11995, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29871930

RESUMO

The unfolded protein response (UPR) is constitutively active in yeast thioredoxin reductase mutants, suggesting a link between cytoplasmic thiol redox control and endoplasmic reticulum (ER) oxidative protein folding. The unique oxidative environment of the ER lumen requires tight regulatory control, and we show that the active UPR depends on the presence of oxidized thioredoxins rather than arising because of a loss of thioredoxin function. Preventing activation of the UPR by deletion of HAC1, encoding the UPR transcription factor, rescues a number of thioredoxin reductase mutant phenotypes, including slow growth, shortened longevity, and oxidation of the cytoplasmic GSH pool. This is because the constitutive UPR in a thioredoxin reductase mutant results in the generation of hydrogen peroxide. The oxidation of thioredoxins in a thioredoxin reductase mutant requires aerobic metabolism and the presence of the Tsa1 and Tsa2 peroxiredoxins, indicating that a complete cytoplasmic thioredoxin system is crucial for maintaining ER redox homeostasis.


Assuntos
Estresse do Retículo Endoplasmático/genética , Peróxido de Hidrogênio/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Tiorredoxina Dissulfeto Redutase/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Aptidão Genética , Glutationa/metabolismo , Oxirredução , Estresse Oxidativo , Peroxidases/genética , Peroxidases/metabolismo , Dobramento de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Resposta a Proteínas não Dobradas
11.
Sci Rep ; 8(1): 3894, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497115

RESUMO

Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.


Assuntos
Agregados Proteicos/fisiologia , Estabilidade de RNA/genética , Estabilidade de RNA/fisiologia , Fenômenos Bioquímicos , Endorribonucleases/metabolismo , Células Eucarióticas/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell Death Differ ; 25(10): 1766-1780, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29523872

RESUMO

Stress granules are cytoplasmic mRNA-protein complexes that form upon the inhibition of translation initiation and promote cell survival in response to environmental insults. However, they are often associated with pathologies, including neurodegeneration and cancer, and changes in their dynamics are implicated in ageing. Here we show that the mTOR effector kinases S6 kinase 1 (S6K1) and S6 kinase 2 (S6K2) localise to stress granules in human cells and are required for their assembly and maintenance after mild oxidative stress. The roles of S6K1 and S6K2 are distinct, with S6K1 having a more significant role in the formation of stress granules via the regulation of eIF2α phosphorylation, while S6K2 is important for their persistence. In C. elegans, the S6 kinase orthologue RSKS-1 promotes the assembly of stress granules and its loss of function sensitises the nematodes to stress-induced death. This study identifies S6 kinases as regulators of stress granule dynamics and provides a novel link between mTOR signalling, translation inhibition and survival.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Arsenitos/toxicidade , Caenorhabditis elegans/metabolismo , DNA Helicases/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Interferência de RNA , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Regulatória Associada a mTOR/antagonistas & inibidores , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Transdução de Sinais/efeitos dos fármacos
13.
J Cell Biol ; 216(8): 2295-2304, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28630146

RESUMO

Disturbances in endoplasmic reticulum (ER) homeostasis create a condition termed ER stress. This activates the unfolded protein response (UPR), which alters the expression of many genes involved in ER quality control. We show here that ER stress causes the aggregation of proteins, most of which are not ER or secretory pathway proteins. Proteomic analysis of the aggregated proteins revealed enrichment for intrinsically aggregation-prone proteins rather than proteins which are affected in a stress-specific manner. Aggregation does not arise because of overwhelming proteasome-mediated degradation but because of a general disruption of cellular protein homeostasis. We further show that overexpression of certain chaperones abrogates protein aggregation and protects a UPR mutant against ER stress conditions. The onset of ER stress is known to correlate with various disease processes, and our data indicate that widespread amorphous and amyloid protein aggregation is an unanticipated outcome of such stress.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Proteínas Priônicas/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/patologia , Genótipo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteômica/métodos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas
14.
Nucleic Acids Res ; 45(11): 6881-6893, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28472342

RESUMO

Reactive oxygen species (ROS) are toxic by-products of normal aerobic metabolism. ROS can damage mRNAs and the translational apparatus resulting in translational defects and aberrant protein production. Three mRNA quality control systems monitor mRNAs for translational errors: nonsense-mediated decay, non-stop decay (NSD) and no-go decay (NGD) pathways. Here, we show that factors required for the recognition of NSD substrates and components of the SKI complex are required for oxidant tolerance. We found an overlapping requirement for Ski7, which bridges the interaction between the SKI complex and the exosome, and NGD components (Dom34/Hbs1) which have been shown to function in both NSD and NGD. We show that ski7 dom34 and ski7 hbs1 mutants are sensitive to hydrogen peroxide stress and accumulate an NSD substrate. We further show that NSD substrates are generated during ROS exposure as a result of aggregation of the Sup35 translation termination factor, which increases stop codon read-through allowing ribosomes to translate into the 3΄-end of mRNAs. Overexpression of Sup35 decreases stop codon read-through and rescues oxidant tolerance consistent with this model. Our data reveal an unanticipated requirement for the NSD pathway during oxidative stress conditions which prevents the production of aberrant proteins from NSD mRNAs.


Assuntos
Estresse Oxidativo , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Adaptação Fisiológica , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Ciclo Celular/fisiologia , Endorribonucleases/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP70/fisiologia , Viabilidade Microbiana , Fatores de Alongamento de Peptídeos/fisiologia , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia
15.
Cell Rep ; 18(11): 2729-2741, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28297675

RESUMO

Thiol peroxidases are conserved hydrogen peroxide scavenging and signaling molecules that contain redox-active cysteine residues. We show here that Gpx3, the major H2O2 sensor in yeast, is present in the mitochondrial intermembrane space (IMS), where it serves a compartment-specific role in oxidative metabolism. The IMS-localized Gpx3 contains an 18-amino acid N-terminally extended form encoded from a non-AUG codon. This acts as a mitochondrial targeting signal in a pathway independent of the hitherto known IMS-import pathways. Mitochondrial Gpx3 interacts with the Mia40 oxidoreductase in a redox-dependent manner and promotes efficient Mia40-dependent oxidative protein folding. We show that cells lacking Gpx3 have aberrant mitochondrial morphology, defective protein import capacity, and lower inner membrane potential, all of which can be rescued by expression of a mitochondrial-only form of Gpx3. Together, our data reveal a novel role for Gpx3 in mitochondrial redox regulation and protein homeostasis.


Assuntos
Glutationa Peroxidase/metabolismo , Membranas Mitocondriais/enzimologia , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Códon/genética , Deleção de Genes , Glutationa Peroxidase/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Oxirredução , Fenótipo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química
16.
J Biol Chem ; 289(12): 8681-96, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24469455

RESUMO

Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Tiorredoxinas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredutases/genética , Mutação Puntual , Estrutura Terciária de Proteína , Alinhamento de Sequência
17.
Nat Cell Biol ; 15(2): 222-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314862

RESUMO

Understanding the molecular mechanisms that promote successful tissue regeneration is critical for continued advancements in regenerative medicine. Vertebrate amphibian tadpoles of the species Xenopus laevis and Xenopus tropicalis have remarkable abilities to regenerate their tails following amputation, through the coordinated activity of numerous growth factor signalling pathways, including the Wnt, Fgf, Bmp, Notch and TGF-ß pathways. Little is known, however, about the events that act upstream of these signalling pathways following injury. Here, we show that Xenopus tadpole tail amputation induces a sustained production of reactive oxygen species (ROS) during tail regeneration. Lowering ROS levels, using pharmacological or genetic approaches, reduces the level of cell proliferation and impairs tail regeneration. Genetic rescue experiments restored both ROS production and the initiation of the regenerative response. Sustained increased ROS levels are required for Wnt/ß-catenin signalling and the activation of one of its main downstream targets, fgf20 (ref. 7), which, in turn, is essential for proper tail regeneration. These findings demonstrate that injury-induced ROS production is an important regulator of tissue regeneration.


Assuntos
Proliferação de Células , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Cauda/metabolismo , Xenopus laevis/metabolismo , Amputação Cirúrgica , Animais , Animais Geneticamente Modificados , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Larva/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Regeneração/efeitos dos fármacos , Cauda/efeitos dos fármacos , Cauda/embriologia , Cauda/cirurgia , Fatores de Tempo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/cirurgia , beta Catenina/metabolismo
18.
Antioxid Redox Signal ; 18(4): 376-85, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22770501

RESUMO

AIMS: Yeast, like other eukaryotes, contains a complete mitochondrial thioredoxin system comprising a thioredoxin (Trx3) and a thioredoxin reductase (Trr2). Mitochondria are a main source of reactive oxygen species (ROS) in eukaryotic organisms, and this study investigates the role of Trx3 in regulating cell death during oxidative stress conditions. RESULTS: We have previously shown that the redox state of mitochondrial Trx3 is buffered by the glutathione redox couple such that oxidized mitochondrial Trx3 only accumulates in mutants simultaneously lacking Trr2 and a glutathione reductase (Glr1). We show here that the redox state of mitochondrial Trx3 is important for yeast growth and its oxidation in a glr1 trr2 mutant induces programmed cell death. Apoptosis is dependent on the Yca1 metacaspase, since loss of YCA1 abrogates cell death induced by oxidized Trx3. Our data also indicate a role for a mitochondrial 1-cysteine (Cys) peroxiredoxin (Prx1) in the oxidation of Trx3, since Trx3 does not become oxidized in glr1 trr2 mutants or in a wild-type strain exposed to hydrogen peroxide in the absence of PRX1. INNOVATION: This study provides evidence that the redox state of a mitochondrial thioredoxin regulates yeast apoptosis in response to oxidative stress conditions. Moreover, the results identify a signaling pathway, where the thioredoxin system functions in both antioxidant defense and in controlling cell death. CONCLUSIONS: Mitochondrial Prx1 functions as a redox signaling molecule that oxidizes Trx3 and promotes apoptosis. This would mean that under conditions where Prx1 cannot detoxify mitochondrial ROS, it induces cell death to remove the affected cells.


Assuntos
Apoptose , Mitocôndrias/enzimologia , Peroxidases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Caspases/metabolismo , Domínio Catalítico , Sequência Conservada , Técnicas de Inativação de Genes , Glutationa/metabolismo , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxina Redutase 2/genética , Tiorredoxinas/química , Tiorredoxinas/genética
19.
ACS Chem Biol ; 7(4): 707-14, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22296668

RESUMO

The interaction of Mia40 with Erv1/ALR is central to the oxidative protein folding in the intermembrane space of mitochondria (IMS) as Erv1/ALR oxidizes reduced Mia40 to restore its functional state. Here we address the role of Mia40 in the import and maturation of Erv1/ALR. The C-terminal FAD-binding domain of Erv1/ALR has an essential role in the import process by creating a transient intermolecular disulfide bond with Mia40. The action of Mia40 is selective for the formation of both intra and intersubunit structural disulfide bonds of Erv1/ALR, but the complete maturation process requires additional binding of FAD. Both of these events must follow a specific sequential order to allow Erv1/ALR to reach the fully functional state, illustrating a new paradigm for protein maturation in the IMS.


Assuntos
Redutases do Citocromo/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Membranas Mitocondriais/metabolismo , Dissulfetos , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Dobramento de Proteína , Transporte Proteico
20.
FEBS J ; 278(22): 4170-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21958041

RESUMO

Cytochromes c are widespread respiratory proteins characterized by the covalent attachment of heme. The formation of c-type cytochromes requires, in all but a few exceptional cases, the formation of two thioether bonds between the two cysteine sulfurs in a -CXXCH- motif in the protein and the vinyl groups of heme. The vinyl groups of the heme are not particularly activated and therefore the addition reaction does not physiologically occur spontaneously in cells. There are several diverse post-translational modification systems for forming these bonds. Here, we describe the complex multiprotein cytochrome c maturation (Ccm) system (in Escherichia coli comprising the proteins CcmABCDEFGH), also called System I, that performs the heme attachment. System I is found in plant mitochondria, archaea and many Gram-negative bacteria; the systems found in other organisms and organelles are described elsewhere in this minireview series.


Assuntos
Grupo dos Citocromos c/metabolismo , Heme/metabolismo , Animais , Bactérias , Humanos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA