Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(26): 10369-10381, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37348001

RESUMO

Doping of nano- and microparticles of oxides with rare earth elements (REEs) is used to fine-tune their structural, optical, and electrochemical properties. On the way to establish the structure-property relationship, we dope tantalum oxide (Ta2O5) particles with REEs to study their effect on the oxide structure and luminescence. Ta2O5 is highly perspective in medicine, catalysis, and optics, but its crystal structure is insufficiently studied. Two synthesis approaches (sol-gel and solvothermal) were used to obtain powders with different textures. Experimental and theoretical studies of amorphous and crystallized tantalum oxide NPs by means of X-ray powder diffraction, Rietveld analysis, EXAFS/XANES spectroscopy, and density functional theory calculations were performed. All samples (doped and undoped) crystallized in orthorhombic phase with no admixtures. It was demonstrated that Ta2O5 is a promising wide-spectrum luminescent material: by combining REEs, both Stokes and anti-Stokes luminescence in the visible region were obtained. By means of optical absorption spectroscopy, it was shown that the prepared samples could be classified as wide band gap semiconductors.

2.
J Mater Chem B ; 11(14): 3054-3070, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36919877

RESUMO

Current intrinsic deficiencies in biomedicine promote the rapid development of alternative multitasking approaches. Recently, monometallic and alloy nanoparticles (NPs) have been widely studied for their potential biomedical applications. However, the research mainly focuses on monometallic compounds and metal oxide NPs that have already been studied. In this review, we investigate promising modified mono- and bimetallic NPs for improving the current state of materials science in medicine. It was contended that effective general biomedical applications can be enhanced by intelligent NP design. Particularly, we discuss transition and platinum metal compositions, iron-based and non-iron compounds, along with liquid alloys. Subsequently, we explore the capabilities provided by modifications such as inorganic and organic coatings, polymers, and biomolecules that can invent new NP designs for precise applications, ultimately resulting in an improved patient outcome. We provide a comprehensive assessment of the advantages and limitations of monometallic and alloy nanomaterials and possible solutions to problems that delay their development.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Humanos , Ligas , Metais , Polímeros
4.
J Mater Chem B ; 11(5): 1068-1078, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625200

RESUMO

With the increase in non-communicable diseases, cancer is becoming one of the most lethal ailments of the coming decades. Significant progress has been made in the development of NPs that combine diagnostic and therapeutic properties in a single system. Multimodal NPs that sequentially perform MRI diagnostics with increased contrast and then act as synergistic agents for magnetic hyperthermia and radiotherapy can be considered as next-generation anticancer drugs. Thus, we propose a systematic study of composite theranostic ZnFe2O4@MnFe2O4 NPs for the first time. Two types of magnetic NPs with MnFe2O4 shell thicknesses of 0.5 (ZM0.5) and 1.7 nm (ZM3) were prepared via hydrothermal synthesis. Tuning the shell thickness was shown to influence the NP r2 and r1 relaxivities and allow T1-T2 dual-mode contrast agents to be obtained. A radiotherapy study demonstrated a significant dose factor enhancement (about 40%) for both NP types. The specific absorption rate of ZM3 in a 100 Oe alternating magnetic field with a frequency of 75 kHz was found to be 8 W g-1, which results in heating up to 42 °C within a few seconds. This work presents high-performance multifunctional NPs capable of combining different diagnostic and therapeutic methods for a full course of treatment using only one type of NP.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Hipertermia Induzida/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Hipertermia , Imageamento por Ressonância Magnética/métodos , Nanopartículas/uso terapêutico
5.
ACS Biomater Sci Eng ; 8(8): 3310-3319, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763797

RESUMO

Since the outcome of an operation largely depends on the quality of wound healing, it is one of the most challenging stages in surgery. Today, wound closure is mostly undertaken by means of a surgical suture. Good surgical sutures are biocompatible and biodegradable and possess excellent mechanical properties. Preferably, these sutures demonstrate optical activity for bacteria detection as there is a risk of surgical site infections. In this study, a solution, which fulfills all the requirements for manufacturing a multifunctional hybrid material, is proposed. In this work, a method for the in situ modification of spider silk with fluorescent carbon dots has been developed. The basic concept is the use of silk fibers as both the main framework for tissue regeneration and a carbon source during carbon dot synthesis. The resulting hybrid material exhibits strong photoluminescence in the red region of the spectrum (590 nm) when irradiated with blue light (480 nm). The proposed approach potentially allows for simultaneous wound closure and pathogen detection.


Assuntos
Carbono , Seda , Suturas , Cicatrização
6.
ACS Biomater Sci Eng ; 7(12): 5633-5641, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34714630

RESUMO

Recently, the combined therapy has become one of the main approaches in cancer treatment. Combining different approaches may provide a significant outcome by triggering several death mechanisms or causing increased damage of tumor cells without hurting healthy ones. The supramolecular nanoplatform based on a high-Z metal reported here is a suitable system for the targeted delivery of chemotherapeutic compounds, imaging, and an enhanced radiotherapy outcome. HfO2 nanoparticles coated with oleic acid and a monomethoxypoly(ethylene glycol)-poly(ε-caprolactone) copolymer shell (nanoplatform) are able to accumulate inside cancer cells and release doxorubicin (DOX) under specific conditions. Neither uncoated nor coated nanoparticles show any cytotoxicity in vitro. DOX loaded onto a nanoplatform demonstrates a lower IC50 value than pure DOX. X-ray irradiation of cancer cells loaded with a nanoplatform shows a higher death rate than that for cells without nanoparticles. These results provide an important foundation for the development of complex nanoscale systems for combined cancer treatment.


Assuntos
Nanopartículas , Polietilenoglicóis , Quimiorradioterapia , Doxorrubicina , Háfnio , Óxidos
7.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199667

RESUMO

Nanoparticles (NPs) with a high atomic number (Z) are promising radiosensitizers for cancer therapy. However, the dependence of their efficacy on irradiation conditions is still unclear. In the present work, 11 different metal and metal oxide NPs (from Cu (ZCu = 29) to Bi2O3 (ZBi = 83)) were studied in terms of their ability to enhance the absorbed dose in combination with 237 X-ray spectra generated at a 30-300 kVp voltage using various filtration systems and anode materials. Among the studied high-Z NP materials, gold was the absolute leader by a dose enhancement factor (DEF; up to 2.51), while HfO2 and Ta2O5 were the most versatile because of the largest high-DEF region in coordinates U (voltage) and Eeff (effective energy). Several impacts of the X-ray spectral composition have been noted, as follows: (1) there are radiation sources that correspond to extremely low DEFs for all of the studied NPs, (2) NPs with a lower Z in some cases can equal or overcome by the DEF value the high-Z NPs, and (3) the change in the X-ray spectrum caused by a beam passing through the matter can significantly affect the DEF. All of these findings indicate the important role of carefully planning radiation exposure in the presence of high-Z NPs.


Assuntos
Cobre/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/radioterapia , Radiossensibilizantes/uso terapêutico , Bismuto/química , Bismuto/uso terapêutico , Cobre/química , Relação Dose-Resposta a Droga , Humanos , Nanopartículas Metálicas/química , Método de Monte Carlo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxidos/química , Óxidos/uso terapêutico , Radiossensibilizantes/química , Dosagem Radioterapêutica
8.
Nanomaterials (Basel) ; 10(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947954

RESUMO

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.

9.
Carbohydr Polym ; 247: 116704, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829832

RESUMO

There exists a high demand for simple and affordable blood glucose monitoring methods. For this purpose, new generations of biosensors are being developed for possible in vivo or dermal use. We present (non)sulphated cellulose nanocrystal/magnetite thin films to act as dermal and oral glucose biosensors. The biocompatible (N-CNC)-Fe3O4 and (S-CNC)-Fe3O4 hybrid systems exhibit peroxidase-like activity, indicated by an almost instant color change when in the presence of glucose and ABTS. Both types of biosensors detect glucose concentrations as low as 5 mM (which corresponds to the level of glucose in biological fluids), with (S-CNC)-Fe3O4 being 1.5 - 2 times as sensitive as (N-CNC)-Fe3O4. Hybrid catalytic activity is more pronounced at room temperature and in acidic environments. The hybrids can therefore be used to determine glucose levels by using sweat and saliva - non-blood bodily secretions which tend to be slightly to moderately acidic and have relatively low glucose levels.


Assuntos
Técnicas Biossensoriais/métodos , Automonitorização da Glicemia/métodos , Celulose/química , Óxido Ferroso-Férrico/química , Glucose/análise , Nanopartículas/química , Oxirredução
10.
Front Chem ; 8: 546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695748

RESUMO

With the advances in material science, hybrid nanomaterials with unique mechanical, electrical, thermal and optical characteristics have been developed. Among them, hybrids based on filamentous forms of carbon, such as carbon nanotubes and carbon nanofibers, in combination with inorganic nanoparticles attract particular attention. Due to the structure and morphology, charge and energy transfer processes lead to synergistic effects that allow the use of less material with higher productivity. To clarify these issues, this review will summarize and discuss the relevant studies of the use of inorganic compounds of various chemical groups in modifying carbon nanomaterials for ecological applications.

11.
Front Chem ; 8: 554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695749

RESUMO

Silkworm silk is mainly known as a luxurious textile. Spider silk is an alternative to silkworm silk fibers and has much more outstanding properties. Silk diversity ensures variation in its application in nature and industry. This review aims to provide a critical summary of up-to-date fabrication methods of spider silk-based organic-inorganic hybrid materials. This paper focuses on the relationship between the molecular structure of spider silk and its mechanical properties. Such knowledge is essential for understanding the innate properties of spider silk as it provides insight into the sophisticated assembly processes of silk proteins into the distinct polymers as a basis for novel products. In this context, we describe the development of spider silk-based hybrids using both natural and bioengineered spider silk proteins blended with inorganic nanoparticles. The following topics are also covered: the diversity of spider silk, its composition and architecture, the differences between silkworm silk and spider silk, and the biosynthesis of natural silk. Referencing biochemical data and processes, this paper outlines the existing challenges and future outcomes.

12.
Inorg Chem ; 59(11): 7469-7478, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396344

RESUMO

Rational engineering of novel nanohybrid materials for sustainable and efficient energy conversion has gained extensive research interest. Cross-linked nanosheets of organic-inorganic nanohybrids (BSeF/Ni(OH)2) were fabricated by one-step reductive electrosynthesis and subsequently applied for electrocatalytic water electrolysis. The organic-inorganic nanohybrids consist of benzo[2,1,3]selenadiazole-5-carbonyl phenylalanine (BSeF) cross-linked with nickel ions (Ni-BSeF) and nickel hydroxides (Ni(OH)2), which provide abundant active sites and feasible charge transfer at the electrocatalytic interface. The resulting electrodeposited nanohybrid BSeF/Ni(OH)2 exhibits bifunctional electrocatalytic performance with 240 and 401 mV of overpotential at +100 and -100 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The BSeF/Ni(OH)2 offers a longer electrocatalytic activity of 20 h for OER and HER at applied high current densities of +400 and -200 mA cm-2. Coupled with the high OER and HER activity, the two-electrode-based system of BSeF/Ni(OH)2 shows a low cell potential of 1.54 V at 10 mA cm-2. The electrocatalytic performance of Ni-BSeF and Ni(OH)2-based organic-inorganic nanohybrids provides an efficient way to develop a nanohybrid-based catalytic system for energy conversion.

13.
Langmuir ; 36(16): 4405-4415, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32243164

RESUMO

This paper presents sols of uncoated and citric acid-coated Fe3O4 nanoparticles obtained by a combination of coprecipitation and sonochemistry methods. A stable concentrated CA-Fe3O4 sol synthesized by a combination of coprecipitation with an inconvenient Fe2+/Fe3+ ratio, modification with citric acid and US treatment was obtained for the first time. A comparative analysis of the composition and morphology of nanoparticles was performed. The sols are oppositely charged and behave as a typical ferrofluid. The citric acid-modified sol is aggregatively stable over wider ranges of pH and electrolyte concentration, but it becomes less stable with the temperature increase. DLVO calculations showed that steric repulsion forces are a vital factor contributing to increased aggregative stability in a modified Fe3O4 sol. The experiments have revealed the magneto-optical effect in a modified Fe3O4 sol with an electrolyte concentration of 0.025-0.075 M caused by a high potential barrier and a deep secondary minimum in pairwise interaction curves. The "pK spectroscopy" mathematical model to describe the potentiometric curves of synthesized magnetite sols was used for the first time. According to potentiometric titration, the ions of the electrolyte practically do not contribute to formation of a surface charge in modified Fe3O4 with a change in pH due to blocking the magnetite surface by citric acid molecules. Drosophila melanogaster was used as a model to show that Fe3O4 in chronic exposure has a low toxic effect.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Nanopartículas de Magnetita/química , Soluções/química , Animais , Ácido Cítrico/química , Ácido Cítrico/toxicidade , Feminino , Fenômenos Magnéticos , Nanopartículas de Magnetita/toxicidade , Masculino , Fenômenos Ópticos , Tamanho da Partícula , Soluções/toxicidade
14.
RSC Adv ; 10(58): 35031-35038, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515643

RESUMO

Both cellulose nanocrystals and gold nanoparticles show immense potential for biological and chemical applications. Gold nanoparticles, which tend to aggregate, are hybridized with cellulose nanocrystals to form stable inorganic-organic hybrids in which nanocellulose acts as a green supporting material for the catalytically active gold nanoparticles. A green synthesis approach was taken, and hydrothermal treatment was used to reduce electrostatic repulsion between the gold nanoparticles and the cellulose nanocrystals to promote heteroaggregation instead of homoaggregation. AFM analysis showed hybrid films to be hygroscopic, suggesting that they would respond to changes in humidity. Laser diffraction and fluorescence quenching were used to determine how hybrid films respond to changes in humidity. Hybrid films were found to respond to changes in humidity quickly, reversibly, and autonomously, making them ideal for use as or in a humidity sensor. Gold nanoparticles were shown to enhance the hybrid response to ambient moisture, causing them to show a linear dependence on changes in humidity, making the hybrid controllable, highly sensitive, and a viable prospective material for humidity sensing applications.

15.
Chem Commun (Camb) ; 55(56): 8174-8177, 2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31241066

RESUMO

A major obstacle in developing upconversion aerogels is the incompatibility of the highly-developed porosity and the crystal structure required for converting light to a shorter wavelength. We propose a novel method for creating a sol-gel procedure for synthesizing metal (Zr, Hf, and Ta) oxide upconverison aerogels uniformly doped with Er3+ and Yb3+ by precisely adjusting the calcination conditions.

16.
ACS Appl Bio Mater ; 2(10): 4427-4435, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021402

RESUMO

Nanostructured drugs are being approved for clinical use, although there is a serious deficit of systematic studies of these materials. Data on toxicity of nanoparticles (NPs) can vary due to different methods of preparation, size, and shape. We investigated the toxicity against cultured human cells, the acute toxicity in mice, and the influence on conjugative transfer of antibiotic resistance genes of clinically relevant NPs such as TiO2, ZrO2, HfO2, Ta2O5, Fe3O4, and AlOOH. NPs were synthesized as aqueous sols by the same method in aqueous solution, with almost identical size 2-10 nm. None of these NPs was cytotoxic at concentrations compatible with water solubility. Furthermore, TiO2, HfO2, Ta2O5, Fe3O4, and AlOOH were not toxic to mice after oral administration. However, ZrO2 showed rather high toxicity, with LD50 2277.8 mg/kg. Experiments with plasmid transfer between bacteria demonstrated that AlOOH NPs were the most hazardous since this material promoted the emergence of resistance to antibiotics. Thus, although our metal oxide NPs are largely non-toxic, their properties may differ in specific biological situations.

17.
Carbohydr Polym ; 200: 162-172, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177154

RESUMO

One possible way of obtaining cellulose nanocrystals and aqueous sols with novel properties is based on modification of supramolecular structure of the polysaccharide. This modification involves rearrangements of hydrogen bonds and has an effect on polymer morphology, formation of surface reactive sites and interface interactions. Disc-like nanocrystals of cellulose II were prepared by solvolysis of regenerated cellulose in acetic acid/octanol medium in the presence of 0.4 mol% of phosphotungstic acid. The starting cellulose samples were dissolved and regenerated in the NaOH/thiourea system. Cellulose nanocrystals were studied by transmission electron microscopy, atomic force microscopy, dynamic light scattering, FTIR spectroscopy, XRD and thermogravimetric analysis. Colloidal stability of aqueous suspensions of cellulose nanocrystals in the presence of electrolyte (KCl) was studied. Their acid-base properties were revealed using potentiometric titration. The influence of electrolyte concentration on dynamic viscosity of the obtained hydrosols and their ability to show birefringence was established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA