Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464213

RESUMO

Curvature is a critical factor in cornea mechanobiology, but its impact on phenotypic alterations and extracellular matrix remodeling of cornea stroma remains unclear. In this work, we investigated how curvature influences the corneal stroma using a hydraulically controlled curvature array chip. The responses of stromal cells to low, medium, and high curvatures were observed by preparing three phenotypes of corneal stromal cells: corneal keratocytes, fibroblasts, and myofibroblasts. Keratocytes exhibited phenotypic alterations in response to curvature changes, notably including a decrease in ALDH3 expression and an increase in α-SMA expression. For focal adhesion, corneal fibroblast and myofibroblasts showed enhanced vinculin localization in response to curvature, while corneal keratocytes presented reduced vinculin expression. For cell alignment and ECM expression, most stromal cells under all curvatures showed a radially organized f-actin and collagen fibrils. Interestingly, for corneal fibroblast under medium curvature, we observed orthogonal cell alignment, which is linked to the unique hoop and meridional stress profiles of the curved surface. Furthermore, lumican expression was upregulated in corneal keratocytes, and keratocan expression was increased in corneal fibroblasts and myofibroblasts due to curvature. These results demonstrate that curvature influences both the phenotype of corneal stromal cells and the structural organization of corneal stroma tissue without any external stimuli. This curvature-dependent behavior of corneal stromal cells presents potential opportunities for creating therapeutic strategies for corneal shape dysfunctions.

2.
Am J Physiol Renal Physiol ; 324(6): F603-F616, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141145

RESUMO

The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.


Assuntos
Hipopotassemia , Deficiência de Potássio , Animais , Camundongos , Adenosina Trifosfatases , Homeostase , Hipopotassemia/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Deficiência de Potássio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
4.
Prog Retin Eye Res ; 92: 101114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36163161

RESUMO

Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.


Assuntos
Proteínas de Drosophila , Canais de Potencial de Receptor Transitório , Animais , Canais de Potencial de Receptor Transitório/fisiologia , Mecanotransdução Celular , Retina/metabolismo , Drosophila/metabolismo , Homeostase , Proteínas de Drosophila/metabolismo
5.
Curr Top Membr ; 89: 189-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210149

RESUMO

The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.


Assuntos
Retina , Canais de Cátion TRPV , Animais , Córnea/metabolismo , Lipídeos , Canais de Cátion TRPV/metabolismo , Vertebrados/metabolismo
7.
Front Immunol ; 13: 805076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432302

RESUMO

Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.


Assuntos
Canais de Cátion TRPM , Malha Trabecular , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Mecanotransdução Celular , Camundongos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Malha Trabecular/metabolismo
8.
Cell Calcium ; 104: 102588, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398674

RESUMO

Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.


Assuntos
Células Ependimogliais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Ependimogliais/metabolismo , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Camundongos , Canais de Cátion TRPV/metabolismo
9.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35129590

RESUMO

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Assuntos
Humor Aquoso/fisiologia , Consenso , Glaucoma/metabolismo , Pressão Intraocular/fisiologia , Hipertensão Ocular/metabolismo , Malha Trabecular/metabolismo , Animais , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Camundongos , Hipertensão Ocular/fisiopatologia , Tonometria Ocular
10.
J Comp Neurol ; 530(2): 537-552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34350994

RESUMO

Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.


Assuntos
Células Amácrinas/metabolismo , Ataxina-2/metabolismo , Glaucoma de Ângulo Aberto/fisiopatologia , Células Ganglionares da Retina/metabolismo , Grânulos de Estresse/patologia , Animais , Dendritos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Retina/fisiologia
11.
J Lipid Res ; 62: 100145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710431

RESUMO

Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-ß-cyclodextrin (MßCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MßCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MßCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Canais de Cátion TRPV/metabolismo , Idoso , Animais , Membrana Celular/química , Células Cultivadas , Humanos , Masculino , Mecanotransdução Celular , Canais de Cátion TRPV/genética , Xenopus laevis
12.
Am J Physiol Cell Physiol ; 320(6): C1013-C1030, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788628

RESUMO

Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.


Assuntos
Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Malha Trabecular/metabolismo , Quinases Associadas a rho/metabolismo , Actinas/metabolismo , Humor Aquoso/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Olho/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Proteína rhoA de Ligação ao GTP/metabolismo
13.
Glia ; 69(6): 1563-1582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624376

RESUMO

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.


Assuntos
Microglia , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Microglia/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Canais de Cátion TRPV/genética
14.
J Physiol ; 599(2): 571-592, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226641

RESUMO

KEY POINTS: Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye. ABSTRACT: Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure-induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1-deficient cells. The majority of TM cells exhibited a delayed stretch-activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell-matrix contacts. Analysis of TM-dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.


Assuntos
Humor Aquoso , Malha Trabecular , Citoesqueleto , Humanos , Pressão Intraocular , Canais Iônicos/genética , Mecanotransdução Celular , Canais de Cátion TRPV
15.
Am J Physiol Cell Physiol ; 318(5): C969-C980, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293931

RESUMO

The porcine lens response to a hyperosmotic stimulus involves an increase in the activity of an ion cotransporter sodium-potassium/two-chloride cotransporter 1 (NKCC1). Recent studies with agonists and antagonists pointed to a mechanism that appears to depend on activation of transient receptor potential vanilloid 1 (TRPV1) ion channels. Here, we compare responses in lenses and cultured lens epithelium obtained from TRPV1-/- and wild type (WT) mice. Hydrostatic pressure (HP) in lens surface cells was determined using a manometer-coupled microelectrode approach. The TRPV1 agonist capsaicin (100 nM) caused a transient HP increase in WT lenses that peaked after ∼30 min and then returned toward baseline. Capsaicin did not cause a detectable change of HP in TRPV1-/- lenses. The NKCC inhibitor bumetanide prevented the HP response to capsaicin in WT lenses. Potassium transport was examined by measuring Rb+ uptake. Capsaicin increased Rb+ uptake in cultured WT lens epithelial cells but not in TRPV1-/- cells. Bumetanide, A889425, and the Akt inhibitor Akti prevented the Rb+ uptake response to capsaicin. The bumetanide-sensitive (NKCC-dependent) component of Rb+ uptake more than doubled in response to capsaicin. Capsaicin also elicited rapid (<2 min) NKCC1 phosphorylation in WT but not TRPV1-/- cells. HP recovery was shown to be absent in TRPV1-/- lenses exposed to hyperosmotic solution. Bumetanide and Akti prevented HP recovery in WT lenses exposed to hyperosmotic solution. Taken together, responses to capsaicin and hyperosmotic solution point to a functional role for TRPV1 channels in mouse lens. Lack of NKCC1 phosphorylation and Rb+ uptake responses in TRPV1-/- mouse epithelium reinforces the notion that a hyperosmotic challenge causes TRPV1-dependent NKCC1 activation. The results are consistent with a role for the TRPV1-activated signaling pathway leading to NKCC1 stimulation in lens osmotic homeostasis.


Assuntos
Cristalino/metabolismo , Membro 2 da Família 12 de Carreador de Soluto/genética , Canais de Cátion TRPV/genética , Animais , Bumetanida/farmacologia , Capsaicina/farmacologia , Linhagem Celular , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Humanos , Pressão Hidrostática/efeitos adversos , Cristalino/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos
16.
Invest Ophthalmol Vis Sci ; 61(4): 2, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271891

RESUMO

Purpose: Contact lenses, osmotic stressors, and chemical burns may trigger severe discomfort and vision loss by damaging the cornea, but the signaling mechanisms used by corneal epithelial cells (CECs) to sense extrinsic stressors are not well understood. We therefore investigated the mechanisms of swelling, temperature, strain, and chemical transduction in mouse CECs. Methods: Intracellular calcium imaging in conjunction with electrophysiology, pharmacology, transcript analysis, immunohistochemistry, and bioluminescence assays of adenosine triphosphate (ATP) release were used to track mechanotransduction in dissociated CECs and epithelial sheets isolated from the mouse cornea. Results: The transient receptor potential vanilloid (TRPV) transcriptome in the mouse corneal epithelium is dominated by Trpv4, followed by Trpv2, Trpv3, and low levels of Trpv1 mRNAs. TRPV4 protein was localized to basal and intermediate epithelial strata, keratocytes, and the endothelium in contrast to the cognate TRPV1, which was confined to intraepithelial afferents and a sparse subset of CECs. The TRPV4 agonist GSK1016790A induced cation influx and calcium elevations, which were abolished by the selective blocker HC067047. Hypotonic solutions, membrane strain, and moderate heat elevated [Ca2+]CEC with swelling- and temperature-, but not strain-evoked signals, sensitive to HC067047. GSK1016790A and swelling evoked calcium-dependent ATP release, which was suppressed by HC067027 and the hemichannel blocker probenecid. Conclusions: These results demonstrate that cation influx via TRPV4 transduces osmotic and thermal but not strain inputs to CECs and promotes hemichannel-dependent ATP release. The TRPV4-hemichannel-ATP signaling axis might modulate corneal pain induced by excessive mechanical, osmotic, and chemical stimulation.


Assuntos
Epitélio Corneano/metabolismo , Mecanotransdução Celular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Eletrofisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica , Técnicas de Patch-Clamp , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPV/genética
17.
J Biol Chem ; 294(48): 18421-18434, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31619514

RESUMO

Many retinal diseases are associated with pathological cell swelling, but the underlying etiology remains to be established. A key component of the volume-sensitive machinery, the transient receptor potential vanilloid 4 (TRPV4) ion channel, may represent a sensor and transducer of cell swelling, but the molecular link between the swelling and TRPV4 activation is unresolved. Here, our results from experiments using electrophysiology, cell volumetric measurements, and fluorescence imaging conducted in murine retinal cells and Xenopus oocytes indicated that cell swelling in the physiological range activated TRPV4 in Müller glia and Xenopus oocytes, but required phospholipase A2 (PLA2) activity exclusively in Müller cells. Volume-dependent TRPV4 gating was independent of cytoskeletal rearrangements and phosphorylation. Our findings also revealed that TRPV4-mediated transduction of volume changes is dependent by its N terminus, more specifically by its distal-most part. We conclude that the volume sensitivity and function of TRPV4 in situ depend critically on its functional and cell type-specific interactions.


Assuntos
Células Ependimogliais/metabolismo , Ativação do Canal Iônico/fisiologia , Neuroglia/metabolismo , Oócitos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Tamanho Celular , Células Ependimogliais/citologia , Feminino , Ativação do Canal Iônico/genética , Camundongos , Neuroglia/citologia , Neurônios/citologia , Neurônios/metabolismo , Oócitos/citologia , Técnicas de Patch-Clamp , Fosfolipases A2/metabolismo , Fosforilação , Ratos , Canais de Cátion TRPV/genética , Xenopus laevis
19.
Invest Ophthalmol Vis Sci ; 60(6): 2294-2303, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117121

RESUMO

Purpose: The concentration of protons in the aqueous humor (AH) of the vertebrate eye is maintained close to blood pH; however, pathologic conditions and surgery may shift it by orders of magnitude. We investigated whether and how changes in extra- and intracellular pH affect the physiology and function of trabecular meshwork (TM) cells that regulate AH outflow. Methods: Electrophysiology, in conjunction with pharmacology, gene knockdown, and optical recording, was used to track the pH dependence of transmembrane currents and mechanotransduction in primary and immortalized human TM cells. Results: Extracellular acidification depolarized the resting membrane potential by inhibiting an outward K+-mediated current, whereas alkalinization hyperpolarized the cells and augmented the outward conductance. Intracellular acidification with sodium bicarbonate hyperpolarized TM cells, whereas removal of intracellular protons with ammonium chloride depolarized the membrane potential. The effects of extra- and intracellular acid and alkaline loading were abolished by quinine, a pan-selective inhibitor of two-pore domain potassium (K2P) channels, and suppressed by shRNA-mediated downregulation of the mechanosensitive K2P channel TREK-1. Extracellular acidosis suppressed, whereas alkalosis facilitated, the amplitude of the pressure-evoked TREK-1-mediated outward current. Conclusions: These results demonstrate that TM mechanotransduction mediated by TREK-1 channels is profoundly sensitive to extra- and intracellular pH shifts. Intracellular acidification might modulate aqueous outflow and IOP by stimulating TREK-1 channels.


Assuntos
Concentração de Íons de Hidrogênio , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Pressão , Malha Trabecular/fisiologia , Células Cultivadas , Humanos , Mecanotransdução Celular/fisiologia , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp
20.
Mol Pharmacol ; 95(4): 433-441, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30679204

RESUMO

Transient receptor potential (TRP) cation channels are molecular targets of various natural products. TRPA1, a member of TRP channel family, is specifically activated by natural products such as allyl isothiocyanate (mustard oil), cinnamaldehyde (cinnamon), and allicin (garlic). In this study, we demonstrated that TRPA1 is also a target of trans-anethole in fennel oil (FO) and fennel seed extract. Similar to FO, trans-anethole selectively elicited calcium influx in TRPA1-expressing mouse sensory neurons of the dorsal root and trigeminal ganglia. These FO- and anethole-induced calcium responses were blocked by a selective TRPA1 channel antagonist, HC-030031. Moreover, both FO and trans-anethole induced calcium influx and transmembrane currents in HEK293 cells stably overexpressing human TRPA1 channels, but not in regular HEK293 cells. Mutation of the amino acids S873 and T874 binding site of human TRPA1 significantly attenuated channel activation by trans-anethole, whereas pretreating with glutathione, a nucleophile, did not. Conversely, activation of TRPA1 by the electrophile allyl isothiocyanate was abolished by glutathione, but was ostensibly unaffected by mutation of the ST binding site. Finally, it was found that trans-anethole was capable of desensitizing TRPA1, and unlike allyl isothiocyanate, it failed to induce nocifensive behaviors in mice. We conclude that trans-anethole is a selective, nonelectrophilic, and seemingly less-irritating agonist of TRPA1.


Assuntos
Anisóis/farmacologia , Óleos Voláteis/farmacologia , Canal de Cátion TRPA1/agonistas , Derivados de Alilbenzenos , Animais , Canais de Cálcio/metabolismo , Foeniculum/química , Células HEK293 , Humanos , Isotiocianatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Raízes Nervosas Espinhais/efeitos dos fármacos , Raízes Nervosas Espinhais/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA