Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
3.
Genet Med ; 24(6): 1227-1237, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35300924

RESUMO

PURPOSE: This study aimed to describe the phenotypic and molecular characteristics of ARCN1-related syndrome. METHODS: Patients with ARCN1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. RESULTS: In total, we identified 14 cases of ARCN1-related syndrome, (9 pediatrics, and 5 fetal cases from 3 families). The clinical features these newly identified cases were compared to 6 previously reported cases for a total of 20 cases. Intrauterine growth restriction, micrognathia, and short stature were present in all patients. Other common features included prematurity (11/15, 73.3%), developmental delay (10/14, 71.4%), genitourinary malformations in males (6/8, 75%), and microcephaly (12/15, 80%). Novel features of ARCN1-related syndrome included transient liver dysfunction and specific glycosylation abnormalities during illness, giant cell hepatitis, hepatoblastoma, cataracts, and lethal skeletal manifestations. Developmental delay was seen in 73% of patients, but only 3 patients had intellectual disability, which is less common than previously reported. CONCLUSION: ARCN1-related syndrome presents with a wide clinical spectrum ranging from a severe embryonic lethal syndrome to a mild syndrome with intrauterine growth restriction, micrognathia, and short stature without intellectual disability. Patients with ARCN1-related syndrome should be monitored for liver dysfunction during illness, cataracts, and hepatoblastoma. Additional research to further define the phenotypic spectrum and possible genotype-phenotype correlations are required.


Assuntos
Catarata , Nanismo , Hepatoblastoma , Deficiência Intelectual , Neoplasias Hepáticas , Micrognatismo , Criança , Feminino , Retardo do Crescimento Fetal/genética , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Síndrome
4.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065284

RESUMO

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Assuntos
Exoma , Patologia Molecular , Criança , Exoma/genética , Humanos , Mutação , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos
5.
J Mol Diagn ; 24(2): 177-188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35074075

RESUMO

Exome reanalysis is useful for providing molecular diagnoses for previously uninformative samples. However, challenges exist in implementing a practical solution for clinicians and laboratories. This study complements the current literature by providing practical considerations for patient-level and cohort-level reanalyses. The Clinical and Laboratory Standards Institute assembled the Document Development Committee and an interpretation working group that developed the framework for reevaluation of exome-based data. We describe two distinct but complementary approaches toward exome reanalyses: clinician-initiated patient-level reanalysis, and laboratory-initiated cohort-level reanalysis. We highlight the advantages and constraints for both approaches, and provide a high-level conceptual guide for ordering clinicians and laboratories through the critical decision pathways. Because clinical exome sequencing continues to be the standard of care in genetics, exome reanalysis would be critical in increasing the overall diagnostic yield. A systematic guide will facilitate the efficient adoption of reevaluation of exome data for laboratories, health care professionals, genetic counselors, and clinicians.


Assuntos
Serviços de Laboratório Clínico , Exoma , Exoma/genética , Humanos , Laboratórios , Laboratórios Clínicos , Sequenciamento do Exoma
6.
Clin Lab Med ; 41(3): 497-515, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34304778

RESUMO

The genetic basis for pediatric acute myeloid leukemia (AML) is highly heterogeneous, often involving the cooperative action of characteristic chromosomal rearrangements and somatic mutations in progrowth and antidifferentiation pathways that drive oncogenesis. Although some driver mutations are shared with adult AML, many genetic lesions are unique to pediatric patients, and their appropriate identification is essential for patient care. The increased understanding of these malignancies through broad genomic studies has begun to risk-stratify patients based on their combinations of genomic alterations, a trend that will enable precision medicine in this population.


Assuntos
Leucemia Mieloide Aguda , Adulto , Criança , Aberrações Cromossômicas , Humanos , Leucemia Mieloide Aguda/genética , Biologia Molecular , Mutação , Medicina de Precisão
7.
Am J Med Genet A ; 182(8): 1906-1912, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573057

RESUMO

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Doenças Desmielinizantes/genética , Malformações do Sistema Nervoso/genética , Doença de Pelizaeus-Merzbacher/genética , RNA Polimerase III/genética , Tubulina (Proteína)/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Desmielinizantes/epidemiologia , Doenças Desmielinizantes/patologia , Exoma/genética , Feminino , Predisposição Genética para Doença , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/genética , Imageamento por Ressonância Magnética , Masculino , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Malformações do Sistema Nervoso/patologia , Doença de Pelizaeus-Merzbacher/epidemiologia , Doença de Pelizaeus-Merzbacher/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
8.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
9.
Am J Med Genet A ; 182(5): 1104-1116, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32133772

RESUMO

Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes.


Assuntos
Anormalidades Craniofaciais/genética , Otopatias/genética , Orelha/anormalidades , Predisposição Genética para Doença , Disostose Mandibulofacial/genética , Receptor de Endotelina A/genética , Animais , Anormalidades Craniofaciais/fisiopatologia , Orelha/fisiopatologia , Otopatias/fisiopatologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mutação com Perda de Função/genética , Disostose Mandibulofacial/fisiopatologia , Camundongos , Camundongos Knockout , Morfogênese/genética , Crista Neural/crescimento & desenvolvimento , Crista Neural/patologia , Fenótipo , Transdução de Sinais/genética
10.
Genet Med ; 22(2): 389-397, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31388190

RESUMO

PURPOSE: Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS: We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS: The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION: The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.


Assuntos
Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Montagem e Desmontagem da Cromatina/genética , Deficiências do Desenvolvimento/genética , Feminino , Estudos de Associação Genética , Genótipo , Perda Auditiva/genética , Cardiopatias Congênitas/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Megalencefalia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Síndrome , Fatores de Transcrição/genética
12.
Genet Med ; 22(3): 453-461, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732716

RESUMO

Gene sequencing panels are a powerful diagnostic tool for many clinical presentations associated with genetic disorders. Advances in DNA sequencing technology have made gene panels more economical, flexible, and efficient. Because the genes included on gene panels vary widely between laboratories in gene content (e.g., number, reason for inclusion, evidence level for gene-disease association) and technical completeness (e.g., depth of coverage), standards that address technical and clinical aspects of gene panels are needed. This document serves as a technical standard for laboratories designing, offering, and reporting gene panel testing. Although these principles can apply to multiple indications for genetic testing, the primary focus is on diagnostic gene panels (as opposed to carrier screening or predictive testing) with emphasis on technical considerations for the specific genes being tested. This technical standard specifically addresses the impact of gene panel content on clinical sensitivity, specificity, and validity-in the context of gene evidence for contribution to and strength of evidence for gene-disease association-as well as technical considerations such as sequencing limitations, presence of pseudogenes/gene families, mosaicism, transcript choice, detection of copy-number variants, reporting, and disclosure of assay limitations.


Assuntos
Testes Genéticos/normas , Genética Médica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Técnicas de Diagnóstico Molecular/normas , Testes Genéticos/tendências , Genética Médica/tendências , Genômica/normas , Genômica/tendências , Humanos , Laboratórios , Técnicas de Diagnóstico Molecular/tendências , Mutação/genética , Estados Unidos
13.
Hum Mutat ; 40(12): 2197-2220, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343788

RESUMO

Alagille syndrome is an autosomal dominant disease with a known molecular etiology of dysfunctional Notch signaling caused primarily by pathogenic variants in JAGGED1 (JAG1), but also by variants in NOTCH2. The majority of JAG1 variants result in loss of function, however disease has also been attributed to lesser understood missense variants. Conversely, the majority of NOTCH2 variants are missense, though fewer of these variants have been described. In addition, there is a small group of patients with a clear clinical phenotype in the absence of a pathogenic variant. Here, we catalog our single-center study, which includes 401 probands and 111 affected family members amassed over a 27-year period, to provide updated mutation frequencies in JAG1 and NOTCH2 as well as functional validation of nine missense variants. Combining our cohort of 86 novel JAG1 and three novel NOTCH2 variants with previously published data (totaling 713 variants), we present the most comprehensive pathogenic variant overview for Alagille syndrome. Using this data set, we developed new guidance to help with the classification of JAG1 missense variants. Finally, we report clinically consistent cases for which a molecular etiology has not been identified and discuss the potential for next generation sequencing methodologies in novel variant discovery.


Assuntos
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutação com Perda de Função , Mutação de Sentido Incorreto , Receptor Notch2/genética , Síndrome de Alagille/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Proteína Jagged-1/metabolismo , Masculino , Taxa de Mutação , Linhagem , Receptor Notch2/metabolismo
14.
Eur J Hum Genet ; 27(4): 612-620, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30626929

RESUMO

Clinical exome sequencing (CES) has become the preferred diagnostic platform for complex pediatric disorders with suspected monogenic etiologies. Despite rapid advancements, the major challenge still resides in identifying the casual variants among the thousands of variants detected during CES testing, and thus establishing a molecular diagnosis. To improve the clinical exome diagnostic efficiency, we developed Phenoxome, a robust phenotype-driven model that adopts a network-based approach to facilitate automated variant prioritization. Phenoxome dissects the phenotypic manifestation of a patient in concert with their genomic profile to filter and then prioritize variants that are likely to affect the function of the gene (potentially pathogenic variants). To validate our method, we have compiled a clinical cohort of 105 positive patient samples that represent a wide range of genetic heterogeneity. Phenoxome identifies the causative variants within the top 5, 10, or 25 candidates in more than 50%, 71%, or 88% of these exomes, respectively. Furthermore, we show that our method is optimized for clinical testing by outperforming the current state-of-art method. We have demonstrated the performance of Phenoxome using a clinical cohort and showed that it enables rapid and accurate interpretation of clinical exomes. Phenoxome is available at https://phenoxome.chop.edu/ .


Assuntos
Sequenciamento do Exoma/estatística & dados numéricos , Exoma/genética , Heterogeneidade Genética , Software , Biologia Computacional , Bases de Dados Genéticas , Humanos
15.
J Mol Diagn ; 21(1): 38-48, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30577886

RESUMO

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.


Assuntos
Sequenciamento do Exoma/métodos , DNA/genética , Exoma , Feminino , Testes Genéticos/métodos , Variação Genética , Humanos , Masculino
16.
Am J Hum Genet ; 103(6): 995-1008, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30471718

RESUMO

Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located ß-HC DNAH11 (defining ODA type 1), and the distally localized ß-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the ß-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient ß-HCs such as that of the unicellular Chlamydomonas reinhardtii.


Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Axonema/genética , Transtornos da Motilidade Ciliar/genética , Humanos , Síndrome de Kartagener/genética , Fenótipo
18.
Child Neurol Open ; 5: 2329048X18789282, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30046645

RESUMO

Next-generation sequencing was performed for 2 families with an undiagnosed neurologic disease. Analysis revealed X-linked mutations in the proteolipid protein 1 (PLP1) gene, which is associated with X-linked Pelizaeus-Merzbacher disease and Spastic Paraplegia type 2. In family A, the novel PLP1 missense mutation c.617T>A (p.M206K) was hemizygous in the 2 affected male children and heterozygous in the mother. In family B, the novel de novoPLP1 frameshift mutation c.359_369del (p.G120fs) was hemizygous in the affected male child. Although PLP1 mutations have been reported to cause an increasingly wide range of phenotypes inclusive of the dystonia, spastic paraparesis, motor neuronopathy, and leukodystrophy observed in our patients, atypical features included the cerebrospinal fluid deficiency of neurotransmitter and pterin metabolites and the delayed appearance of myelin abnormalities on neuroimaging studies. Next-generation sequencing studies provided a diagnosis for these families with complex leukodystrophy disease phenotypes, which expanded the spectrum of PLP1-associated leukodystrophy clinical phenotypes.

19.
Am J Hum Genet ; 102(5): 995-1007, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656858

RESUMO

Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.


Assuntos
Doenças Cerebelares/genética , Epilepsia Generalizada/genética , Fácies , Mutação de Sentido Incorreto/genética , Proteínas de Transporte Vesicular/genética , Idade de Início , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Fenótipo
20.
J Clin Endocrinol Metab ; 103(3): 1042-1047, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329447

RESUMO

Context: Persistent hypoglycemia in the newborn period most commonly occurs as a result of hyperinsulinism. The phenotype of hypoketotic hypoglycemia can also result from pituitary hormone deficiencies, including growth hormone and adrenocorticotropic hormone deficiency. Forkhead box A2 (Foxa2) is a transcription factor shown in mouse models to influence insulin secretion by pancreatic ß cells. In addition, Foxa2 is involved in regulation of pituitary development, and deletions of FOXA2 have been linked to panhypopituitarism. Objective: To describe an infant with congenital hyperinsulinism and hypopituitarism as a result of a mutation in FOXA2 and to determine the functional impact of the identified mutation. Main Outcome Measure: Difference in wild-type (WT) vs mutant Foxa2 transactivation of target genes that are critical for ß cell function (ABCC8, KNCJ11, HADH) and pituitary development (GLI2, NKX2-2, SHH). Results: Transactivation by mutant Foxa2 of all genes studied was substantially decreased compared with WT. Conclusions: We report a mutation in FOXA2 leading to congenital hyperinsulinism and hypopituitarism and provide functional evidence of the molecular mechanism responsible for this phenotype.


Assuntos
Hiperinsulinismo Congênito/genética , Fator 3-beta Nuclear de Hepatócito/genética , Hipopituitarismo/congênito , Mutação , Feminino , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio , Humanos , Recém-Nascido , Proteínas Nucleares , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA