Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; : e2400317, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38837466

RESUMO

This study introduces bis(1-cyanocyclohex-1-yl)trithiocarbonate (TTC-bCCH) as a novel trithiocarbonate chain transfer agent and compares its reactivity with the previously described bis(2-cyanopropan-2-yl)trithiocarbonate (TTC-bCP) for the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St), n-butyl acrylate (nBA), and methyl methacrylate (MMA). Significant findings include the effective control of Mn and low dispersities from the onset of polymerization of St and nBA showing swift addition-fragmentation kinetics, leading to similar behaviors between the two RAFT agents. In contrast, a fourfold decrease of the chain transfer constant to MMA is established for TTC-bCCH over TTC-bCP. This trend is confirmed through density functional theory (DFT) calculations. Finally, the study compares thermoplastic elastomer properties of all-(meth)acrylic ABA block copolymers produced with both RAFT agents. The impact of dispersity of PMMA blocks on thermomechanical properties evaluated via rheological analysis reveals a more pronounced temperature dependence of the storage modulus (G') for the triblock copolymer synthesized with TTC-bCCH, indicating potential alteration of the phase separation.

2.
Chem Sci ; 15(2): 609-617, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179532

RESUMO

Corannulene is known to undergo a fast bowl-to-bowl inversion at r.t. via a planar transition structure (TS). Herein we present the catalysis of this process within a perylene bisimide (PBI) cyclophane composed of chirally twisted, non-planar chromophores, linked by para-xylylene spacers. Variable temperature NMR studies reveal that the bowl-to-bowl inversion is significantly accelerated within the cyclophane template despite the structural non-complementarity between the binding site of the host and the TS of the guest. The observed acceleration corresponds to a decrease in the bowl-to-bowl inversion barrier of 11.6 kJ mol-1 compared to the uncatalyzed process. Comparative binding studies for corannulene (20 π-electrons) and other planar polycyclic aromatic hydrocarbons (PAHs) with 14 to 24 π-electrons were applied to rationalize this barrier reduction. They revealed high binding constants that reach, in tetrachloromethane as a solvent, the picomolar range for the largest guest coronene. Computational models corroborate these experimental results and suggest that both TS stabilization and ground state destabilization contribute to the observed catalytic effect. Hereby, we find a "mutual induced fit" between host and guest in the TS complex, such that mutual geometric adaptation of the energetically favored planar TS and curved π-systems of the host results in an unprecedented non-planar TS of corannulene. Concomitant partial planarization of the PBI units optimizes noncovalent TS stabilization by π-π stacking interactions. This observation of a "mutual induced fit" in the TS of a host-guest complex was further validated experimentally by single crystal X-ray analysis of a host-guest complex with coronene as a qualitative transition state analogue.

3.
Chem Asian J ; 19(3): e202301071, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161148

RESUMO

We present four proton-responsive palladium and platinum complexes, [MCl2 (R PONNHO)] (M=Pd, Pt; R=i Pr, t Bu) synthesised by complexation of PdCl2 or PtCl2 (COD) with the 1,8-naphthyridine ligand R PONNHO. Deprotonation of [MCl2 (tBu PONNHO)] switches ligand coordination from mono- to dinucleating, offering a synthetic pathway to bimetallic PdII and PtII complexes [M2 Cl2 (tBu PONNO)2 ]. Two-electron reduction gives planar MI -MI complexes [M2 (tBu PONNO)2 ] (M=Pd, Pt) containing a metal-metal bond. In contrast to the related nickel system that forms a metallophosphorane [Ni2 (tBu PONNOPONNO)], an unusual phosphinite binding mode is observed in [M2 (tBu PONNO)2 ] containing close phosphinite-naphthyridinone P⋅⋅⋅O interactions, which is investigated spectroscopically, crystallographically and computationally. The presented proton-responsive and structurally-responsive R PONNHO and bimetallic R PONNO complexes offer a novel platform for future explorations of metal-ligand and metal-metal cooperativity with palladium and platinum.

4.
Chemistry ; 29(67): e202302366, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641804

RESUMO

The dinickel(I) complex Ni2 (tBu PONNOPONNO), featuring a planar macrocyclic diphosphoranide ligand tBu PONNOPONNO, offers a unique architectural platform for observing bimetallic elementary reactions. Oxidative addition reactions of alkyl halides produce dinickel(II) complexes of the type Ni2 (µ-R)(µ-X)(tBu PONNOPONNO). However, when R=Et ß-hydride elimination is observed to form a dinickel monohydride, with the rate dependent on the nature of X. DFT studies suggest a new mechanism for bimetallic ß-hydride elimination, where the rate dependence arises from the steric pressure imposed by the X group on the opposing trans face of the dinickel macrocycle. This work enhances understanding of bimetallic elementary reactions, particularly ß-hydride elimination, which have not been well-explored for dinuclear systems.

5.
Angew Chem Int Ed Engl ; 62(19): e202301301, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912608

RESUMO

Enzymes actuate catalysis through a combination of transition state stabilization and ground state destabilization, inducing enantioselectivity through chiral binding sites. Here, we present a supramolecular model system which employs these basic principles to catalyze the enantiomerization of [5]helicene. Catalysis is hereby mediated not through a network of functional groups but through π-π catalysis exerted from the curved aromatic framework of a chiral perylene bisimide (PBI) cyclophane offering a binding pocket that is intricately complementary with the enantiomerization transition structure. Although transition state stabilization originates simply from dispersion and electrostatic interactions, enantiomerization kinetics are accelerated by a factor of ca. 700 at 295 K. Comparison with the meso-congener of the catalytically active cyclophane shows that upon configurational inversion in only one PBI moiety the catalytic effect is lost, highlighting the importance of precise transition structure recognition in supramolecular enzyme mimics.

6.
J Org Chem ; 87(9): 5485-5496, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35061376

RESUMO

The racemization of axially chiral biaryls is a fundamental step toward transforming kinetic resolutions into dynamic kinetic resolutions (DKRs). The high enantiomerization barriers of many biaryl compounds of synthetic relevance, however, may render DKR strategies challenging. Here, we computationally explore the potential of a para-xylene bridged perylene bisimide cyclophane to serve as a conceptually transferrable biaryl enantiomerization catalyst for fundamental biphenyl and binaphthyl scaffolds, as well as the versatile reagent 1,1'-binaphthyl-2,2'-diol and a precursor to the heterobiaryl ligand QUINAP. The calculated enantiomerization barriers of the different biaryls decrease by 19.8-73.2% upon complexation, suggesting that the cyclophane may form an effective biaryl racemization catalyst. We find that these observed barrier reductions predominantly originate from a combination of transition structure stabilization through π-π stacking interactions between the shape-complementary transition structures and catalyst, as well as ground-state destabilization of the less complementary reactants, indicating a generalizable strategy toward biaryl racemization catalysis. In exploring all enantiomerization pathways of the biaryls under consideration, we further find a systematic enantiomer- and conformer-dependent chirality transfer from biaryl to cyclophane in host-guest complexes.


Assuntos
Imidas , Perileno , Catálise , Perileno/análogos & derivados , Estereoisomerismo
7.
J Comput Chem ; 43(2): 96-105, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34677827

RESUMO

Stable equilibrium compounds containing a planar antiaromatic cyclooctatetraene (COT) ring are promising candidates for organic electronic devices such as organic semiconductor transistors. The planarization of COT by incorporation into rigid planar π-systems, as well as by oxidation or reduction has attracted considerable attention in recent years. Using dispersion-corrected density functional theory calculations, we explore an alternative approach of planarizing COT derivatives by adsorption onto graphene. We show that strong π-π stacking interactions between graphene and COT derivatives induce a planar structure with an antiaromatic central COT ring. In addition to being reversible, this strategy provides a novel approach for planarizing COT without the need for incorporation into a rigid structure, atomic substitution, oxidation, or reduction.

8.
Inorg Chem ; 60(1): 494-504, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33325695

RESUMO

In the past decade, the use of earth-abundant metals in homogeneous catalysis has flourished. In particular, metals such as cobalt and iron have been used extensively in reductive transformations including hydrogenation, hydroboration, and hydrosilylation. Manganese, on the other hand, has been considerably less explored in these reductive transformations. Here, we report a well-defined manganese complex, [Mn(iPrBDI)(OTf)2] (2a; BDI = bipyridinediimine), that is an active precatalyst in the hydroboration of a variety of electronically differentiated alkenes (>20 examples). The hydroboration is specifically selective for terminal alkenes and occurs with exclusive anti-Markovnikov selectivity. In contrast, when using the analogous cobalt complex [Co(iPrBDI)(OTf)2] (3a), internal alkenes are hydroborated efficiently, where a sequence of isomerization steps ultimately leads to their hydroboration. The contrasting terminal versus internal alkene selectivity for manganese and cobalt was investigated computationally and is further discussed in the herein-reported study.

9.
Chemistry ; 27(10): 3420-3426, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33295080

RESUMO

Noncovalent interactions are an integral part of the modern catalysis toolbox. Although stronger noncovalent interactions such as hydrogen bonding are commonly the main driving force of catalysis, π-π interactions typically provide smaller additional stabilizations, for example, to afford selectivity enhancements. Here, it is shown computationally that pristine graphene flakes may efficiently catalyze the skeletal inversions of various benzannulated cyclooctatetraene derivatives, providing an example of a catalytic process driven solely by π-π stacking interactions. Hereby, the catalytic effect results from disproportionate shape complementarity between catalyst and transition structure compared with catalyst and reactant. An energy decomposition analysis reveals electrostatic and, especially with increasing system size, to a larger extent, dispersion interactions as the origin of stabilization.

10.
Chemphyschem ; 21(15): 1675-1681, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32515165

RESUMO

Despite versatile applications of functionalized graphene in catalysis, applications of pure, unfunctionalized graphene in catalysis are in their infancy. This work uses both computational and experimental approaches to show that single-layer graphene can efficiently catalyze the racemization of axially chiral BINOL in solution. Using double-hybrid density functional theory (DHDFT) we calculate the uncatalyzed and catalyzed Gibbs free reaction barrier heights in a number of representative solvents of varying polarity: benzene, diphenyl ether, dimethylformamide (DMF), and water. These calculations show that (i) graphene can achieve significant catalytic efficiencies (▵▵G≠ cat ) varying between 47.2 (in diphenyl ether) and 60.7 (in DMF) kJ mol-1 . An energy decomposition analysis reveals that this catalytic activity is driven by electrostatic and dispersion interactions. Based on these computational results, we explore the graphene-catalyzed racemization of axially chiral BINOL experimentally and show that single-layer graphene can efficiently catalyze this process. Whilst the uncatalyzed racemization requires high temperatures of over 200 °C, a pristine single-layer graphene catalyst makes it accessible at 60 °C.

11.
J Org Chem ; 84(17): 11343-11347, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31398031

RESUMO

In most catalytic applications, graphene is either functionalized or acts as the catalyst support. DFT calculations show on the example of the racemizations of binaphthyl compounds that pure unmodified graphene can directly catalyze chemical processes through stabilizing noncovalent π-π interactions resulting from shape complementarity between transition structures and catalyst.

12.
J Comput Chem ; 40(4): 630-637, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30368841

RESUMO

Crotonaldehyde, a common environmental pollutant and product of endogenous lipid peroxidation, reacts with guanine to form DNA adducts with pronounced genotoxicity and mutagenicity. Here, we explore the molecular mechanism of this adduct formation using double-hybrid density functional theory methods. The reaction can be envisaged to occur in a two-step fashion via an aza-Michael addition leading to an intermediate ring-open adduct followed by a cyclization reaction giving the mutagenic ring-closed adduct. We find that (i) a 1,2-type addition is favored over a 1,4-type addition for the aza-Michael addition, and (ii) an initial tautomerization of the guanine moiety in the resulting ring-open adduct significantly reduces the barrier toward cyclization compared to the direct cyclization of the ring-open adduct in its keto-form. Overall, the aza-Michael addition is found to be rate-determining. We further find that participation of a catalytic water molecule significantly reduces the energy barriers of both the addition and cyclization reaction. © 2018 Wiley Periodicals, Inc.


Assuntos
Aldeídos/química , Adutos de DNA/química , Adutos de DNA/síntese química , Teoria da Densidade Funcional , Guanina/química , Catálise , Ciclização , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA