Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Hyperthermia ; 41(1): 2352545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991549

RESUMO

Magnetic resonance thermometry (MRT) can measure in-vivo 3D-temperature changes in real-time and noninvasively. However, for the oropharynx region and the entire head and neck, motion potentially introduces large artifacts. Considering long treatment times of 60-90 min, this study aims to evaluate whether MRT around the oropharynx is clinically feasible for hyperthermia treatments and quantify the effects of breathing and swallowing on MRT performance. A 3D-ME-FGRE sequence was used in a phantom cooling down and around the oropharynx of five volunteers over ∼75 min. The imaging protocol consisted of imaging with acceleration (ARC = 2), number of image averages (NEX = 1,2 and 3). For volunteers, the acquisitions included a breath-hold scan and scans with deliberate swallowing. MRT performance was quantified in neck muscle, spinal cord and masseter muscle, using mean average error (MAE), mean error (ME) and spatial standard deviation (SD). In phantom, an increase in NEX leads to a significant decrease in SD, but MAE and ME were unchanged. No significant difference was found in volunteers between the different scans. There was a significant difference between the regions evaluated: neck muscle had the best MAE (=1.96 °C) and SD (=0.82 °C), followed by spinal cord (MAE = 3.17 °C, SD = 0.92 °C) and masseter muscle (MAE = 4.53 °C, SD = 1.16 °C). Concerning the ME, spinal cord did best, then neck muscle and masseter muscle, with values of -0.64 °C, 1.15 °C and -3.05 °C respectively. Breathing, swallowing, and different ways of imaging (acceleration and NEX) do not significantly influence the MRT performance in the oropharynx region. The ROI selected however, leads to significant differences.


Assuntos
Imageamento por Ressonância Magnética , Orofaringe , Termometria , Humanos , Imageamento por Ressonância Magnética/métodos , Termometria/métodos , Orofaringe/diagnóstico por imagem , Masculino , Adulto , Hipertermia Induzida/métodos , Feminino , Imagens de Fantasmas
2.
Phys Med Biol ; 69(7)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373350

RESUMO

Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-optimization strategy is presented. In a retrospective study, this online re-optimization approach was compared to our trigger-based offline re-planning (offlineTBre-planning) schedule, including extensive robustness analyses.Approach. The online re-optimization method employs automated multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in contrast to 3 mm for offlineTBre-planning). Hard planning constraints and spot addition are used to enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-risk doses. For 67 repeat-CTs from 15 patients, fraction doses of the two strategies were compared for the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range robustness settings were simulated using polynomial chaos expansion for fast and accurate dose calculations.Main results. For 14/67 repeat-CTs, offlineTBre-planning resulted in <50% probability ofD98%≥ 95% of the prescribed dose (Dpres) in one or both CTVs, which never happened with online re-optimization. With offlineTBre-planning, eight repeat-CTs had zero probability of obtainingD98%≥ 95%Dpresfor CTV7000, while the minimum probability with online re-optimization was 81%. Risks of xerostomia and dysphagia grade ≥ II were reduced by 3.5 ± 1.7 and 3.9 ± 2.8 percentage point [mean ± SD] (p< 10-5for both). In online re-optimization, adjustment of spot configuration followed by spot-intensity re-optimization took 3.4 min on average.Significance. The fast online re-optimization strategy always prevented substantial losses of target coverage caused by day-to-day anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of this, online re-optimization could be performed with smaller setup robustness settings, contributing to improved organs-at-risk sparing.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Estudos Retrospectivos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
3.
BMC Cancer ; 23(1): 541, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312053

RESUMO

BACKGROUND: Radiotherapy (RT) is the standard of care for most advanced head and neck squamous cell carcinoma (HNSCC) and results in an unfavorable 5-year overall survival of 40%. Despite strong biological rationale, combining RT with immune checkpoint inhibitors does not result in a survival benefit. Our hypothesis is that the combination of these individually effective treatments fails because of radiation-induced immunosuppression and lymphodepletion. By integrating modern radiobiology and innovative radiotherapy concepts, the patient's immune system could be maximally retained by (1) increasing the dose per fraction so that the total dose and number of fractions can be reduced (HYpofractionation), (2) redistributing the radiation dose towards a higher peak dose within the tumor center and a lowered elective lymphatic field dose (Dose-redistribution), and (3) using RAdiotherapy with protons instead of photons (HYDRA). METHODS: The primary aim of this multicenter study is to determine the safety of HYDRA proton- and photon radiotherapy by conducting two parallel phase I trials. Both HYDRA arms are randomized with the standard of care for longitudinal immune profiling. There will be a specific focus on actionable immune targets and their temporal patterns that can be tested in future hypofractionated immunoradiotherapy trials. The HYDRA dose prescriptions (in 20 fractions) are 40 Gy elective dose and 55 Gy simultaneous integrated boost on the clinical target volume with a 59 Gy focal boost on the tumor center. A total of 100 patients (25 per treatment group) will be recruited, and the final analysis will be performed one year after the last patient has been included. DISCUSSION: In the context of HNSCC, hypofractionation has historically only been reserved for small tumors out of fear for late normal tissue toxicity. To date, hypofractionated radiotherapy may also be safe for larger tumors, as both the radiation dose and volume can be reduced by the combination of advanced imaging for better target definition, novel accelerated repopulation models and high-precision radiation treatment planning and dose delivery. HYDRA's expected immune-sparing effect may lead to improved outcomes by allowing for future effective combination treatment with immunotherapy. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov; NCT05364411 (registered on May 6th, 2022).


Assuntos
Neoplasias de Cabeça e Pescoço , Fótons , Humanos , Prótons , Hipofracionamento da Dose de Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Terapia de Imunossupressão , Neoplasias de Cabeça e Pescoço/radioterapia , Estudos Multicêntricos como Assunto
4.
Radiother Oncol ; 176: 68-75, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150418

RESUMO

BACKGROUND AND PURPOSE: In intensity modulated proton therapy (IMPT), the impact of setup errors and anatomical changes is commonly mitigated by robust optimization with population-based setup robustness (SR) settings and offline replanning. In this study we propose and evaluate an alternative approach based on daily plan selection from patient-specific pre-treatment established plan libraries (PLs). Clinical implementation of the PL strategy would be rather straightforward compared to daily online re-planning. MATERIALS AND METHODS: For 15 head-and-neck cancer patients, the planning CT was used to generate a PL with 5 plans, robustly optimized for increasing SR: 0, 1, 2, 3, 5 mm, and 3% range robustness. Repeat CTs (rCTs) and realistic setup and range uncertainty distributions were used for simulation of treatment courses for the PL approach, treatments with fixed SR (fSR3) and a trigger-based offline adaptive schedule for 3 mm SR (fSR3OfA). Daily plan selection in the PL approach was based only on recomputed dose to the CTV on the rCT. RESULTS: Compared to using fSR3 and fSR3OfA, the risk of xerostomia grade ≥ II & III and dysphagia ≥ grade III were significantly reduced with the PL. For 6/15 patients the risk of xerostomia and/or dysphagia ≥ grade II could be reduced by > 2% by using PL. For the other patients, adherence to target coverage constraints was often improved. fSR3OfA resulted in significantly improved coverage compared to PL for selected patients. CONCLUSION: The proposed PL approach resulted in overall reduced NTCPs compared to fSR3 and fSR3OfA at limited cost in target coverage.


Assuntos
Transtornos de Deglutição , Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Xerostomia , Humanos , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco
5.
Radiother Oncol ; 166: 58-64, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843840

RESUMO

BACKGROUND: Due to its specific physical characteristics, proton irradiation is especially suited for irradiation of chordomas and chondrosarcoma in the axial skeleton. Robust plan optimization renders the proton beam therapy more predictable upon individual setup errors. Reported experience with the planning and delivery of robustly optimized plans in chordoma and chondrosarcoma of the mobile spine and sacrum, is limited. In this study, we report on the clinical use of robustly optimized, intensity modulated proton beam therapy in these patients. METHODS: We retrospectively reviewed patient, treatment and acute toxicity data of all patients with chordoma and chondrosarcoma of the mobile spine and sacrum, treated between 1 April 2019 and 1 April 2020 at our institute. Anatomy changes during treatment were evaluated by weekly cone-beam CTs (CBCT), supplemented by scheduled control-CTs or ad-hoc control-CTs. Acute toxicity was scored weekly during treatment and at 3 months after therapy according to CTCAE 4.0. RESULTS: 17 chordoma and 3 chondrosarcoma patients were included. Coverage of the high dose clinical target volume was 99.8% (range 56.1-100%) in the nominal and 80.9% (range 14.3-99.6%) in the voxel-wise minimum dose distribution. Treatment plan adaptation was needed in 5 out of 22 (22.7%) plans. Reasons for plan adaptation were either reduced tumor coverage or increased dose to the OAR. CONCLUSIONS: Robustly optimized intensity modulated proton beam therapy for chordoma and chondrosarcoma of the mobile spine is feasible. Plan adaptations due to anatomical changes were required in approximately 23 percent of treatment courses.


Assuntos
Neoplasias Ósseas , Condrossarcoma , Cordoma , Terapia com Prótons , Radioterapia de Intensidade Modulada , Neoplasias Ósseas/radioterapia , Condrossarcoma/radioterapia , Cordoma/radioterapia , Estudos de Viabilidade , Humanos , Terapia com Prótons/efeitos adversos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Sacro
6.
Cancers (Basel) ; 13(23)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34885258

RESUMO

(1) Background: Head and neck cancer (HNC) patients with recurrent or second primary (SP) tumors in previously irradiated areas represent a clinical challenge. Definitive or postoperative reirradiation with or without sensitizing therapy, like chemotherapy, should be considered. As an alternative to chemotherapy, hyperthermia has shown to be a potent sensitizer of radiotherapy in clinical studies in the primary treatment of HNC. At our institution, we developed the Hypercollar3D, as the successor to the Hypercollar, to enable improved application of hyperthermia for deeply located HNC. In this study, we report on the feasibility and clinical outcome of patients treated with the Hypercollar3D as an adjuvant to reirradiation in recurrent or SP HNC patients; (2) Methods: We retrospectively analyzed all patients with a recurrent or SP HNC treated with reirradiation combined with hyperthermia using the Hypercollar3D between 2014 and 2018. Data on patients, tumors, and treatments were collected. Follow-up data on disease specific outcomes as well as acute and late toxicity were collected. Data were analyzed using Kaplan Meier analyses; (3) Results: Twenty-two patients with recurrent or SP HNC were included. The average mean estimated applied cfSAR to the tumor volume for the last 17 patients was 80.5 W/kg. Therefore, the novel Hypercollar3D deposits 55% more energy at the target than our previous Hypercollar applicator. In patients treated with definitive thermoradiotherapy a complete response rate of 81.8% (9/11) was observed at 12 weeks following radiotherapy. Two-year local control (LC) and overall survival (OS) were 36.4% (95% CI 17.4-55.7%) and 54.6% (95% CI 32.1-72.4%), respectively. Patients with an interval longer than 24 months from their previous radiotherapy course had an LC of 66.7% (95% CI 37.5-84.6%), whereas patients with a time interval shorter than 24 months had an LC of 14.3% (95% CI 0.7-46.5%) at 18 months (p = 0.01). Cumulative grade 3 or higher toxicity was 39.2% (95% CI 16.0-61.9%); (4) Conclusions: Reirradiation combined with deep hyperthermia in HNC patients using the novel Hypercollar3D is feasible and deposits an average cfSAR of 80.5 W/kg in the tumor volume. The treatment results in high complete response rates at 12 weeks post-treatment. Local control and local toxicity rates were comparable to those reported for recurrent or SP HNC. To further optimize the hyperthermia treatment in the future, temperature feedback is warranted to apply heat at the maximum tolerable dose without toxicity. These data support further research in hyperthermia as an adjuvant to radiotherapy, both in the recurrent as well as in the primary treatment of HNC patients.

7.
Oncoimmunology ; 9(1): 1817653, 2020 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-33457098

RESUMO

Neuroblastoma is a childhood malignancy and in the majority of patients, the primary tumor arises in one of the adrenal glands. Neuroblastoma cells highly express the disialoganglioside GD2, which is the primary target for the development of neuroblastoma immunotherapy. Anti-GD2 mAbs have shown clinical efficacy and are integrated into standard treatment for high-risk neuroblastoma patients. We previously reported synergy between the HDAC inhibitor Vorinostat and anti-GD2 mAbs in a heterotopic, subcutaneous growing neuroblastoma model. Additionally, we have previously developed an orthotopic intra-adrenal neuroblastoma model showing more aggressive tumor growth. Here, we report that anti-GD2 mAb and Vorinostat immunocombination therapy is even more effective in suppressing neuroblastoma growth in the aggressive orthotopic model, resulting in increased animal survival. Intra-adrenal tumors from mice treated with Vorinostat were highly infiltrated with myeloid cells, including macrophages, displaying increased MHCII and Fc-receptor expression. Collectively, these data provide a strong rationale for clinical testing of anti-GD2 mAbs with concomitant Vorinostat in neuroblastoma patients.


Assuntos
Gangliosídeos , Neuroblastoma , Animais , Anticorpos Monoclonais/uso terapêutico , Criança , Humanos , Imunoterapia , Camundongos , Neuroblastoma/tratamento farmacológico , Vorinostat/farmacologia
8.
Radiother Oncol ; 140: 150-158, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31302345

RESUMO

BACKGROUND: Addition of deep hyperthermia results in improved local control (LC) and overall survival (OS) compared to radiotherapy alone in patients with cervical carcinoma. Previously, we showed that the thermal dose of hyperthermia significantly correlates with LC and disease specific survival (DSS). Over the last decade, new radiation techniques were introduced resulting in improved LC. AIM: To validate the effect of thermal dose in a more recent cohort of patients treated with modern radiotherapy techniques, including image guided brachytherapy (IGBT). METHODS: We analyzed primary cervical carcinoma patients treated with a combination of radiotherapy and deep hyperthermia between 2005 and 2016 at our institute. Data on patient, tumor and treatment were collected including the thermal dose parameters TRISE and CEM43T90. Follow-up data on LC, disease free survival, DSS, OS as well as late toxicity data were collected. Data were analyzed using the Cox proportional hazard and Kaplan-Meier analyses. RESULTS: 227 patients were included. In multivariate analysis, histology, FIGO stage, lymphadenopathy, TRISE, CEM43T90 and IGBT had a significant effect on LC. In the patients treated with IGBT, the thermal dose parameter TRISE remained to have a significant effect on LC in univariate analysis. CONCLUSIONS: The positive association between thermal dose and clinical outcome is replicated in an independent, recent cohort of cervical carcinoma patients. Importantly, in patients receiving IGBT, the effect of thermal dose on clinical outcome is still observed.


Assuntos
Braquiterapia/métodos , Hipertermia Induzida , Neoplasias do Colo do Útero/terapia , Adulto , Idoso , Estudos de Coortes , Terapia Combinada , Feminino , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais
9.
J Biol Chem ; 294(12): 4437-4449, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670592

RESUMO

Neuroblastoma cells highly express the disialoganglioside GD2, a tumor-associated carbohydrate antigen, which is only sparsely expressed on healthy tissue. GD2 is a primary target for the development of immunotherapy for neuroblastoma. Immunotherapy with monoclonal anti-GD2 antibodies has proven safety and efficacy in clinical trials and is included in the standard treatment for children with high-risk neuroblastoma. Strategies to modulate GD2 expression in neuroblastoma could further improve anti-GD2-targeted immunotherapy. Here, we report that the cellular sialylation pathway, as well as epigenetic reprogramming, strongly modulates GD2 expression in human and mouse neuroblastoma cell lines. Recognition of GD2 by the 14G2a antibody is sialic acid-dependent and was blocked with the fluorinated sialic acid mimetic Ac53FaxNeu5Ac. Interestingly, sialic acid supplementation using a cell-permeable sialic acid analogue (Ac5Neu5Ac) boosted GD2 expression without or with minor alterations in overall cell surface sialylation. Furthermore, sialic acid supplementation with Ac5Neu5Ac combined with various histone deacetylase (HDAC) inhibitors, including vorinostat, enhanced GD2 expression in neuroblastoma cells beyond their individual effects. Mechanistic studies revealed that Ac5Neu5Ac supplementation increased intracellular CMP-Neu5Ac concentrations, thereby providing higher substrate levels for sialyltransferases. Furthermore, HDAC inhibitor treatment increased mRNA expression of the sialyltransferases GM3 synthase (ST3GAL5) and GD3 synthase (ST8SIA1), both of which are involved in GD2 biosynthesis. Our findings reveal that sialic acid analogues and HDAC inhibitors enhance GD2 expression and could potentially be employed to boost anti-GD2 targeted immunotherapy in neuroblastoma patients.


Assuntos
Antígenos de Neoplasias/metabolismo , Gangliosídeos/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácido N-Acetilneuramínico/farmacologia , Neuroblastoma/imunologia , Regulação para Cima/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Imunoterapia , Camundongos , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Neuroblastoma/terapia , Sialiltransferases/metabolismo
11.
Oncoimmunology ; 5(6): e1164919, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27471639

RESUMO

Neuroblastoma (NBL) is a childhood malignancy of the sympathetic nervous system. For high-risk NBL patients, the mortality rate is still over 50%, despite intensive multimodal treatment. Anti-GD2 monoclonal antibody (mAB) in combination with systemic cytokine immunotherapy has shown clinical efficacy in high-risk NBL patients. Targeted therapy using histone deacetylase inhibitors (HDACi) is currently being explored in cancer treatment and already shows promising results. Using our recently developed transplantable TH-MYCN NBL model, we here report that the HDAC inhibitor Vorinostat synergizes with anti-GD2 mAb therapy in reducing NBL tumor growth. Further mechanistic studies uncovered multiple mechanisms for the observed synergy, including Vorinostat-induced specific NBL cell death and upregulation of the tumor antigen GD2 on the cell surface of surviving NBL cells. Moreover, Vorinostat created a permissive tumor microenvironment (TME) for tumor-directed mAb therapy by increasing macrophage effector cells expressing high levels of Fc-receptors (FcR) and decreasing the number and function of myeloid-derived suppressor cells (MDSC). Collectively, these data imply further testing of other epigenetic modulators with immunotherapy and provide a strong basis for clinical testing of anti-GD2 plus Vorinostat combination therapy in NBL patients.

12.
Cancer Immunol Immunother ; 64(5): 563-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687736

RESUMO

In around half of the patients with neuroblastoma (NBL), the primary tumor is located in one of the adrenal glands. We have previously reported on a transplantable TH-MYCN model of subcutaneous (SC) growing NBL in C57Bl/6 mice for immunological studies. In this report, we describe an orthotopic TH-MYCN transplantable model where the tumor cells were injected intra-adrenally (IA) by microsurgery. Strikingly, 9464D cells grew out much faster in IA tumors compared to the subcutis. Tumors were infiltrated by equal numbers of lymphocytes and myeloid cells. Within the myeloid cell population, however, tumor-infiltrating macrophages were more abundant in IA tumors compared to SC tumors and expressed lower levels of MHC class II, indicative of a more immunosuppressive phenotype. Using 9464D cells stably expressing firefly luciferase, enhanced IA tumor growth could be confirmed using bioluminescence. Collectively, these data show that the orthotopic IA localization of TH-MYCN cells impacts the NBL tumor microenvironment, resulting in a more stringent NBL model to study novel immunotherapeutic approaches for NBL.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Macrófagos/imunologia , Neoplasias Experimentais/patologia , Neuroblastoma/patologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Microambiente Tumoral/imunologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/terapia , Glândulas Suprarrenais/citologia , Glândulas Suprarrenais/imunologia , Glândulas Suprarrenais/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Medições Luminescentes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Neuroblastoma/genética , Neuroblastoma/terapia , Proteínas Nucleares/biossíntese , Proteínas Oncogênicas/biossíntese , Tela Subcutânea/imunologia , Tela Subcutânea/patologia
13.
Oncotarget ; 5(16): 6558-72, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25115382

RESUMO

Epigenetic modifications, like histone acetylation, are essential for regulating gene expression within cells. Cancer cells acquire pathological epigenetic modifications resulting in gene expression patterns that facilitate and sustain tumorigenesis. Epigenetic manipulation therefore is emerging as a novel targeted therapy for cancer. Histone Acetylases (HATs) and Histone Deacetylases (HDACs) regulate histone acetylation and hence gene expression. Histone deacetylase (HDAC) inhibitors are well known to affect cancer cell viability and biology and are already in use for the treatment of cancer patients. Immunotherapy can lead to clinical benefit in selected cancer patients, especially in patients with limited disease after tumor debulking. HDAC inhibitors can potentially synergize with immunotherapy by elimination of tumor cells. The direct effects of HDAC inhibitors on immune cell function, however, remain largely unexplored. Initial data have suggested HDAC inhibitors to be predominantly immunosuppressive, but more recent reports have challenged this view. In this review we will discuss the effects of HDAC inhibitors on tumor cells and different immune cell subsets, synergistic interactions and possible mechanisms. Finally, we will address future challenges and potential application of HDAC inhibitors in immunocombination therapy of cancer.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Quimioprevenção , Humanos , Imunoterapia/métodos , Neoplasias/enzimologia , Neoplasias/imunologia
14.
Int J Cancer ; 134(6): 1335-45, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24038106

RESUMO

Current multimodal treatments for patients with neuroblastoma (NBL), including anti-disialoganglioside (GD2) monoclonal antibody (mAb) based immunotherapy, result in a favorable outcome in around only half of the patients with advanced disease. To improve this, novel immunocombinational strategies need to be developed and tested in autologous preclinical NBL models. A genetically well-explored autologous mouse model for NBL is the TH-MYCN model. However, the immunobiology of the TH-MYCN model remains largely unexplored. We developed a mouse model using a transplantable TH-MYCN cell line in syngeneic C57Bl/6 mice and characterized the immunobiology of this model. In this report, we show the relevance and opportunities of this model to study immunotherapy for human NBL. Similar to human NBL cells, syngeneic TH-MYCN-derived 9464D cells endogenously express the tumor antigen GD2 and low levels of MHC Class I. The presence of the adaptive immune system had little or no influence on tumor growth, showing the low immunogenicity of the NBL cells. In contrast, depletion of NK1.1+ cells resulted in enhanced tumor outgrowth in both wild-type and Rag1(-/-) mice, showing an important role for NK cells in the natural anti-NBL immune response. Analysis of the tumor infiltrating leukocytes ex vivo revealed the presence of both tumor associated myeloid cells and T regulatory cells, thus mimicking human NBL tumors. Finally, anti-GD2 mAb mediated NBL therapy resulted in ADCC in vitro and delayed tumor outgrowth in vivo. We conclude that the transplantable TH-MYCN model represents a relevant model for the development of novel immunocombinatorial approaches for NBL patients.


Assuntos
Modelos Animais de Doenças , Gangliosídeos/imunologia , Proteínas de Homeodomínio/fisiologia , Imunoterapia , Neuroblastoma/terapia , Proteínas Proto-Oncogênicas/fisiologia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Transgenes/fisiologia , Células Tumorais Cultivadas
15.
Immunology ; 138(2): 105-15, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23216602

RESUMO

Myeloid-derived suppressor cells (MDSC) and regulatory T (Treg) cells are major components of the immune suppressive tumour microenvironment (TME). Both cell types expand systematically in preclinical tumour models and promote T-cell dysfunction that in turn favours tumour progression. Clinical reports show a positive correlation between elevated levels of both suppressors and tumour burden. Recent studies further revealed that MDSCs can modulate the de novo development and induction of Treg cells. The overlapping target cell population of Treg cells and MDSCs is indicative for the importance and flexibility of immune suppression under pathological conditions. It also suggests the existence of common pathways that can be used for clinical interventions aiming to manipulate the TME. Elimination or reprogramming of the immune suppressive TME is one of the major current challenges in immunotherapy of cancer. Interestingly, recent findings suggest that natural killer T (NKT) cells can acquire the ability to convert immunosuppressive MDSCs into immunity-promoting antigen-presenting cells. Here we will review the cross-talk between MDSCs and other immune cells, focusing on Treg cells and NKT cells. We will consider its impact on basic and applied cancer research and discuss how targeting MDSCs may pave the way for future immunocombination therapies.


Assuntos
Comunicação Celular/imunologia , Tolerância Imunológica , Células Mieloides/imunologia , Células T Matadoras Naturais/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Humanos , Imunoterapia/métodos , Células Mieloides/patologia , Células T Matadoras Naturais/patologia , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Reguladores/patologia
16.
J Pediatr Pharmacol Ther ; 17(1): 93-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23118663

RESUMO

We present the case of a 2-year-old asthmatic boy with atrioventricular (AV)-reentry tachycardia following albuterol inhalation, who was later diagnosed with Wolff-Parkinson-White (WPW) syndrome. The Naranjo adverse drug reaction probability scale score for this adverse event was 7, indicating that the association between his AV-reentry tachycardia and inhalation of albuterol is probable. To our knowledge, this is the first case report that shows the potential arrhythmogenic effects of albuterol in a child with WPW syndrome. We urge clinicians to be aware of this potentially life-threatening adverse effect and to closely monitor these patients when they need beta-adrenergic drugs in case of emergency. Furthermore, this report highlights the dilemma regarding the safe treatment of pediatric patients with both asthma and WPW syndrome.

17.
Immunotherapy ; 4(2): 163-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22394368

RESUMO

Neuroblastoma (NBL) is an aggressive malignancy of the sympathetic nervous system. Advanced-stage NBLs prove fatal in approximately 50% of patients within 5 years. Therefore, new treatment modalities are urgently needed. Immunotherapy is a treatment modality that can be combined with established forms of treatment. Administration of monoclonal antibodies or dendritic cell-based therapies alone can lead to favorable clinical outcomes in individual cancer patients; for example patients with melanoma, lymphoma and NBL. However, clinical benefit is still limited to a minority of patients, and further improvements are clearly needed. In this article, we review the most commonly used approaches to treat patients with NBL and highlight the prerequisites and opportunities of cell-based immunotherapy, involving both innate and adaptive immune-effector cells. Furthermore, we discuss the potential of the combined application of immunotherapy and novel tumor-targeted therapies for the treatment of both cancer in general and NBL in particular.


Assuntos
Doenças do Sistema Nervoso Autônomo/imunologia , Doenças do Sistema Nervoso Autônomo/terapia , Imunoterapia Adotiva/métodos , Neuroblastoma/imunologia , Neuroblastoma/terapia , Imunidade Adaptativa , Animais , Antígenos de Neoplasias/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doenças do Sistema Nervoso Autônomo/patologia , Terapia Combinada , Humanos , Imunidade Inata , Terapia de Alvo Molecular , Neuroblastoma/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA