Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 107(4): 967-976, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-35766421

RESUMO

Worldwide, cervical artificial insemination using frozen-thawed semen yields low pregnancy rates. The only exception to this is in Norway, where vaginal insemination with frozen-thawed semen yields pregnancy rates in excess of 60% and which has been attributed to the specific ewe breed used. Our previous work demonstrated differences in cervical gene expression at the follicular phase of the estrous cycle in ewe breeds with known differences in pregnancy rates. In this study, we characterized the cervical transcriptome of the same ewe breeds [Suffolk, Belclare, Fur, and Norwegian White Sheep (NWS)] during the luteal phase, as an optimal environment at the luteal phase could better prepare the cervix for sperm migration through the cervix at the subsequent follicular phase. High-quality RNA extracted from postmortem cervical tissue was analyzed by RNA sequencing. After stringent filtering, 1051, 1924, and 611 differentially expressed genes (DEGs) were detected in the low-fertility Suffolk breed compared with Belclare, Fur, and NWS, respectively. Gene ontology analysis identified increased humoral adaptive immune response pathways in Suffolk. Increased expression of multiple immune genes supports the presence of an active immune response in the cervix of Suffolk ewes, which differentiates them significantly from the other three ewe breeds. Inflammatory pathways were upregulated in the Suffolk, resulting in higher expression of the potent pro-inflammatory cytokines. Therefore, higher levels of pro-inflammatory cytokines indicate unresolved inflammation in the cervix of the low-fertility Suffolk breed that could contribute to reduced cervical sperm transport in the next follicular phase.


Assuntos
Colo do Útero , Sêmen , Animais , Colo do Útero/fisiologia , Citocinas , Feminino , Inseminação Artificial/veterinária , Fase Luteal , Masculino , Gravidez , RNA , Sêmen/fisiologia , Ovinos , Transporte Espermático , Espermatozoides/fisiologia
2.
BMC Genomics ; 23(1): 363, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35546662

RESUMO

BACKGROUND: Cervical artificial insemination (AI) with frozen-thawed semen results in unacceptably low pregnancy rates internationally. The exception is in Norway, where vaginal deposition of frozen-thawed semen to a natural oestrous routinely yields pregnancy rates in excess of 70%. Previous studies by our group has demonstrated that this is due to differences in cervical sperm transport. However, a potentially important contributory factor is that ewes are inseminated to a natural oestrous in Norway but to a synchronised oestrous across most of the rest of the world. In this study, we interrogated the gene expression of the sheep cervix of four ewe breeds with known differences in pregnancy rates following cervical AI using frozen-thawed semen under the effect of exogenous hormones to synchronise the oestrous cycle. These four ewe breeds (n = 8 to 11 ewes per breed) are from two countries: Ireland (Belclare and Suffolk; medium and low fertility, respectively) and Norway (Norwegian White Sheep (NWS) and Fur; both with high fertility compared to the Irish ewe breeds). RESULTS: RNA extracted from cervical biopsies collected from these breeds was analysed by RNA-sequencing and differential gene expression analysis. Using the low-fertility Suffolk breed as a reference level; 27, 1827 and 2641 genes were differentially expressed in Belclare, Fur and NWS ewes, respectively (P <  0.05 and FC > 1.5). Gene ontology (GO) analysis revealed that Fur and NWS had an up-regulation of enriched pathways involved in muscle contraction and development compared to Suffolk. However, there was a down-regulation of the immune response pathway in NWS compared to Suffolk. In addition, GO analysis showed similar expression patterns involved in muscle contraction, extracellular matrix (ECM) development and cell-cell junction in both Norwegian ewe breeds, which differed to the Irish ewe breeds. CONCLUSIONS: This novel study has identified a number of conserved and breed-specific biological processes under the effect of oestrous synchronisation that may impact cervical sperm transport during the follicular phase of the reproductive cycle.


Assuntos
Colo do Útero , Fase Folicular , Animais , Colo do Útero/fisiologia , Feminino , Inseminação Artificial/veterinária , Masculino , Gravidez , RNA , Ovinos/genética , Transcriptoma
3.
BMC Genomics ; 22(1): 752, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34666676

RESUMO

BACKGROUND: The outcome of cervical artificial insemination (AI) with frozen-thawed semen in sheep is limited by the inability of sperm to traverse the cervix of some ewe breeds. Previous research has demonstrated that cervical sperm transport is dependent on ewe breed, as sperm can traverse the cervix in greater numbers in some higher fertility ewe breeds. However, the molecular mechanisms underlying ewe breed differences in sperm transport through the cervix remain unknown. In this study, we aimed to characterise the cervical transcriptome of four European ewe breeds with known differences in pregnancy rates following cervical AI using frozen-thawed semen at the follicular phase of a natural oestrous cycle. Cervical post mortem tissue samples were collected from two Irish ewe breeds (Belclare and Suffolk; medium and low fertility, respectively) and from two Norwegian ewe breeds (Norwegian White Sheep (NWS) and Fur; high fertility compared to both Irish breeds) at the follicular phase of a natural oestrous cycle (n = 8 to 10 ewes per breed). RESULTS: High-quality RNA extracted from biopsies of the mid-region of the cervix was analysed by RNA-sequencing and Gene Ontology (GO). After stringent filtering (P <  0.05 and FC > 1.5), a total of 11, 1539 and 748 differentially expressed genes (DEGs) were identified in Belclare, Fur and NWS compared to the low fertility Suffolk breed, respectively. Gene ontology analysis identified significantly enriched biological processes involved in muscle contraction, extracellular matrix (ECM) development and the immune response. Gene co-expression analysis revealed similar patterns in muscle contraction and ECM development modules in both Norwegian ewe breeds, which differed to the Irish ewe breeds. CONCLUSIONS: These breed-specific biological processes may account for impaired cervical sperm transport through the cervix in sheep during the follicular phase of the reproductive cycle. This novel and comprehensive dataset provides a rich foundation for future targeted initiatives to improve cervical AI in sheep.


Assuntos
Colo do Útero , Fase Folicular , Animais , Feminino , Fertilidade/genética , Inseminação Artificial , Masculino , Gravidez , Ovinos/genética , Carneiro Doméstico/genética , Transcriptoma
4.
Porcine Health Manag ; 4: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410782

RESUMO

BACKGROUND: The most prevalent Fusarium mycotoxin in grains is deoxynivalenol (DON). Contamination of swine feed with DON can result in reduced consumption and poor growth performance. Gestating and lactating sows need sufficient feed intake for fetus development during late gestation and milk production and body maintenance during lactation. Therefore, there is considerable concern in modern piglet production about the effects of DON contamination in sow feed. Most previous studies in sows have been done under experimental conditions, with DON levels ≥2.8 mg/kg feed. The aim of the current field trial was to investigate the effects of feeding grains that are naturally contaminated with more realistic levels of DON on sows during late gestation and lactation. METHODS: In a commercial, high-yield specific pathogen-free piglet production unit, 45 Norwegian Landrace × Yorkshire sows were fed three diets from 93 ± 1 days of gestation until weaning of the piglets, and average daily feed intake (ADFI), body weight (BW), production and reproduction performance, as well as sow blood parameters were recorded. Diets were made from naturally contaminated oats, with three concentration levels: 1) control (DON < 0.2 mg/kg), 2) DON level 1 (1.4 mg DON/kg), and 3) DON level 2 (1.7 mg DON/kg). RESULTS: Sows that were fed DON level 1 and 2 diets showed a 4-10% reduction in feed consumption during lactation, compared with sows in the control group. However, the DON-contaminated diets did not significantly affect sow BW or backfat thickness. Similarly, there were neither effects on production or reproduction performance, nor on blood parameters in the sows. The effects on skin temperature were variable. CONCLUSION: Naturally contaminated diets with realistic, moderately increased DON levels, fed during late gestation and lactation in a modern high-yield piglet production farm, had limited effects on sow health and production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA