Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nucleic Acids Res ; 51(10): 5255-5270, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115000

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.


Assuntos
SARS-CoV-2 , Humanos , Regulação Alostérica , Sequência de Aminoácidos , COVID-19 , Microscopia Crioeletrônica , Endorribonucleases/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química
2.
Protein Sci ; 31(9): e4391, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36040268

RESUMO

In their recent commentary in Protein Science, Jaskolski et al. analyzed three randomly picked diffraction data sets from fragment-screening group depositions from the PDB and, based on that, they claimed that such data are principally problematic. We demonstrate here that if such data are treated properly, none of the proclaimed criticisms persist.


Assuntos
Proteínas , Cristalografia por Raios X , Ligantes , Proteínas/química
3.
Front Chem ; 10: 844598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601556

RESUMO

Primary hyperoxaluria type I (PH1) is caused by AGXT gene mutations that decrease the functional activity of alanine:glyoxylate aminotransferase. A build-up of the enzyme's substrate, glyoxylate, results in excessive deposition of calcium oxalate crystals in the renal tract, leading to debilitating renal failure. Oxidation of glycolate by glycolate oxidase (or hydroxy acid oxidase 1, HAO1) is a major cellular source of glyoxylate, and siRNA studies have shown phenotypic rescue of PH1 by the knockdown of HAO1, representing a promising inhibitor target. Here, we report the discovery and optimization of six low-molecular-weight fragments, identified by crystallography-based fragment screening, that bind to two different sites on the HAO1 structure: at the active site and an allosteric pocket above the active site. The active site fragments expand known scaffolds for substrate-mimetic inhibitors to include more chemically attractive molecules. The allosteric fragments represent the first report of non-orthosteric inhibition of any hydroxy acid oxidase and hold significant promise for improving inhibitor selectivity. The fragment hits were verified to bind and inhibit HAO1 in solution by fluorescence-based activity assay and surface plasmon resonance. Further optimization cycle by crystallography and biophysical assays have generated two hit compounds of micromolar (44 and 158 µM) potency that do not compete with the substrate and provide attractive starting points for the development of potent and selective HAO1 inhibitors.

4.
Front Mol Biosci ; 9: 861491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35480897

RESUMO

The throughput of macromolecular X-ray crystallography experiments has surged over the last decade. This remarkable gain in efficiency has been facilitated by increases in the availability of high-intensity X-ray beams, (ultra)fast detectors and high degrees of automation. These developments have in turn spurred the development of several dedicated centers for crystal-based fragment screening which enable the preparation and collection of hundreds of single-crystal diffraction datasets per day. Crystal structures of target proteins in complex with small-molecule ligands are of immense importance for structure-based drug design (SBDD) and their rapid turnover is a prerequisite for accelerated development cycles. While the experimental part of the process is well defined and has by now been established at several synchrotron sites, it is noticeable that software and algorithmic aspects have received far less attention, as well as the implications of new methodologies on established paradigms for structure determination, analysis, and visualization. We will review three key areas of development of large-scale protein-ligand studies. First, we will look into new software developments for batch data processing, followed by a discussion of the methodological changes in the analysis, modeling, refinement and deposition of structures for SBDD, and the changes in mindset that these new methods require, both on the side of depositors and users of macromolecular models. Finally, we will highlight key new developments for the presentation and analysis of the collections of structures that these experiments produce, and provide an outlook for future developments.

5.
RSC Chem Biol ; 3(1): 44-55, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128408

RESUMO

Since the emergence of SARS-CoV-2 in 2019, Covid-19 has developed into a serious threat to our health, social and economic systems. Although vaccines have been developed in a tour-de-force and are now increasingly available, repurposing of existing drugs has been less successful. There is a clear need to develop new drugs against SARS-CoV-2 that can also be used against future coronavirus infections. Non-structural protein 10 (nsp10) is a conserved stimulator of two enzymes crucial for viral replication, nsp14 and nsp16, exhibiting exoribonuclease and methyltransferase activities. Interfering with RNA proofreading or RNA cap formation represents intervention strategies to inhibit replication. We applied fragment-based screening using nano differential scanning fluorometry and X-ray crystallography to identify ligands targeting SARS-CoV-2 nsp10. We identified four fragments located in two distinct sites: one can be modelled to where it would be located in the nsp14-nsp10 complex interface and the other in the nsp16-nsp10 complex interface. Microscale thermophoresis (MST) experiments were used to quantify fragment affinities for nsp10. Additionally, we showed by MST that the interaction by nsp14 and 10 is weak and thereby that complex formation could be disrupted by small molecules. The fragments will serve as starting points for the development of more potent analogues using fragment growing techniques and structure-based drug design.

6.
J Med Chem ; 64(24): 17887-17900, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34898210

RESUMO

Fragment-based drug discovery (FBDD) is a very effective hit identification method. However, the evolution of fragment hits into suitable leads remains challenging and largely artisanal. Fragment evolution is often scaffold-centric, meaning that its outcome depends crucially on the chemical structure of the starting fragment. Considering that fragment screening libraries cover only a small proportion of the corresponding chemical space, hits should be seen as probes highlighting privileged areas of the chemical space rather than actual starting points. We have developed an automated computational pipeline to mine the chemical space around any specific fragment hit, rapidly finding analogues that share a common interaction motif but are structurally novel and diverse. On a prospective application on the bromodomain-containing protein 4 (BRD4), starting from a known fragment, the platform yields active molecules with nonobvious scaffold changes. The procedure is fast and inexpensive and has the potential to uncover many hidden opportunities in FBDD.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Automação , Descoberta de Drogas/métodos , Humanos , Ligantes
7.
J Vis Exp ; (171)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34125095

RESUMO

In fragment-based drug discovery, hundreds or often thousands of compounds smaller than ~300 Da are tested against the protein of interest to identify chemical entities that can be developed into potent drug candidates. Since the compounds are small, interactions are weak, and the screening method must therefore be highly sensitive; moreover, structural information tends to be crucial for elaborating these hits into lead-like compounds. Therefore, protein crystallography has always been a gold-standard technique, yet historically too challenging to find widespread use as a primary screen. Initial XChem experiments were demonstrated in 2014 and then trialed with academic and industrial collaborators to validate the process. Since then, a large research effort and significant beamtime have streamlined sample preparation, developed a fragment library with rapid follow-up possibilities, automated and improved the capability of I04-1 beamline for unattended data collection, and implemented new tools for data management, analysis and hit identification. XChem is now a facility for large-scale crystallographic fragment screening, supporting the entire crystals-to-deposition process, and accessible to academic and industrial users worldwide. The peer-reviewed academic user program has been actively developed since 2016, to accommodate projects from as broad a scientific scope as possible, including well-validated as well as exploratory projects. Academic access is allocated through biannual calls for peer-reviewed proposals, and proprietary work is arranged by Diamond's Industrial Liaison group. This workflow has already been routinely applied to over a hundred targets from diverse therapeutic areas, and effectively identifies weak binders (1%-30% hit rate), which both serve as high-quality starting points for compound design and provide extensive structural information on binding sites. The resilience of the process was demonstrated by continued screening of SARS-CoV-2 targets during the COVID-19 pandemic, including a 3-week turn-around for the main protease.


Assuntos
Cristalografia por Raios X/métodos , Descoberta de Drogas/métodos , Proteínas/química , Humanos
8.
Sci Adv ; 7(16)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33853786

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) macrodomain within the nonstructural protein 3 counteracts host-mediated antiviral adenosine diphosphate-ribosylation signaling. This enzyme is a promising antiviral target because catalytic mutations render viruses nonpathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of 2533 diverse fragments resulted in 214 unique macrodomain-binders. An additional 60 molecules were selected from docking more than 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several fragment hits were confirmed by solution binding using three biophysical techniques (differential scanning fluorimetry, homogeneous time-resolved fluorescence, and isothermal titration calorimetry). The 234 fragment structures explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.


Assuntos
Domínio Catalítico/fisiologia , Ligação Proteica/fisiologia , Proteínas não Estruturais Virais/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Proteínas não Estruturais Virais/genética , Tratamento Farmacológico da COVID-19
9.
ACS Chem Biol ; 16(4): 586-595, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33724769

RESUMO

Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Galactoquinase/antagonistas & inibidores , Galactosemias/tratamento farmacológico , Cristalografia por Raios X , Galactoquinase/química , Humanos , Conformação Proteica
10.
Biochimie ; 185: 96-104, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33746066

RESUMO

Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called "lid loop" is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS "activation" loop, formerly known as the "gating" loop) renders a highly active protein in stable tetrameric form. We conclude that the "activation" loop, a known target for GLS inhibition, may also be a drug target for GLS2.


Assuntos
Ativação Enzimática , Glutaminase/química , Fígado/enzimologia , Substituição de Aminoácidos , Catálise , Glutaminase/genética , Glutaminase/metabolismo , Humanos , Mutação de Sentido Incorreto , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
11.
Acta Crystallogr D Struct Biol ; 77(Pt 1): 62-74, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33404526

RESUMO

Despite the tremendous success of X-ray cryo-crystallography in recent decades, the transfer of crystals from the drops in which they are grown to diffractometer sample mounts remains a manual process in almost all laboratories. Here, the Shifter, a motorized, interactive microscope stage that transforms the entire crystal-mounting workflow from a rate-limiting manual activity to a controllable, high-throughput semi-automated process, is described. By combining the visual acuity and fine motor skills of humans with targeted hardware and software automation, it was possible to transform the speed and robustness of crystal mounting. Control software, triggered by the operator, manoeuvres crystallization plates beneath a clear protective cover, allowing the complete removal of film seals and thereby eliminating the tedium of repetitive seal cutting. The software, either upon request or working from an imported list, controls motors to position crystal drops under a hole in the cover for human mounting at a microscope. The software automatically captures experimental annotations for uploading to the user's data repository, removing the need for manual documentation. The Shifter facilitates mounting rates of 100-240 crystals per hour in a more controlled process than manual mounting, which greatly extends the lifetime of the drops and thus allows a dramatic increase in the number of crystals retrievable from any given drop without loss of X-ray diffraction quality. In 2015, the first in a series of three Shifter devices was deployed as part of the XChem fragment-screening facility at Diamond Light Source, where they have since facilitated the mounting of over 120 000 crystals. The Shifter was engineered to have a simple design, providing a device that could be readily commercialized and widely adopted owing to its low cost. The versatile hardware design allows use beyond fragment screening and protein crystallography.


Assuntos
Desenho de Equipamento , Microscopia , Proteínas/química , Software , Cristalização , Cristalografia por Raios X
12.
bioRxiv ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269349

RESUMO

The SARS-CoV-2 macrodomain (Mac1) within the non-structural protein 3 (Nsp3) counteracts host-mediated antiviral ADP-ribosylation signalling. This enzyme is a promising antiviral target because catalytic mutations render viruses non-pathogenic. Here, we report a massive crystallographic screening and computational docking effort, identifying new chemical matter primarily targeting the active site of the macrodomain. Crystallographic screening of diverse fragment libraries resulted in 214 unique macrodomain-binding fragments, out of 2,683 screened. An additional 60 molecules were selected from docking over 20 million fragments, of which 20 were crystallographically confirmed. X-ray data collection to ultra-high resolution and at physiological temperature enabled assessment of the conformational heterogeneity around the active site. Several crystallographic and docking fragment hits were validated for solution binding using three biophysical techniques (DSF, HTRF, ITC). Overall, the 234 fragment structures presented explore a wide range of chemotypes and provide starting points for development of potent SARS-CoV-2 macrodomain inhibitors.

13.
Curr Opin Struct Biol ; 65: 209-216, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33171388

RESUMO

Understanding allosteric regulation of proteins is fundamental to our study of protein structure and function. Moreover, allosteric binding pockets have become a major target of drug discovery efforts in recent years. However, even though the function of almost every protein can be influenced by allostery, it remains a challenge to discover, rationalise and validate putative allosteric binding pockets. This review examines how the discovery and analysis of putative allosteric binding sites have been influenced by the availability of centralised facilities for crystallographic fragment screening, along with newly developed computational methods for modelling low occupancy features. We discuss the experimental parameters required for success, and how new methods could influence the field in the future. Finally, we reflect on the general problem of how to translate these findings into actual ligand development programs.


Assuntos
Proteínas , Regulação Alostérica , Sítio Alostérico , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Proteínas/química , Proteínas/metabolismo
14.
Nat Commun ; 11(1): 5047, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028810

RESUMO

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Assuntos
Betacoronavirus/química , Cisteína Endopeptidases/química , Fragmentos de Peptídeos/química , Proteínas não Estruturais Virais/química , Betacoronavirus/enzimologia , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Espectrometria de Massas , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Eletricidade Estática , Proteínas não Estruturais Virais/metabolismo
15.
ChemMedChem ; 15(24): 2513-2520, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32812371

RESUMO

Combined photochemical arylation, "nuisance effect" (SN Ar) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein-ligand structure determination. Reactions were deliberately allowed to run "out of control" in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SN Ar processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.


Assuntos
Derivados de Benzeno/síntese química , Inibidores Enzimáticos/síntese química , Bibliotecas de Moléculas Pequenas/síntese química , Derivados de Benzeno/metabolismo , Catálise , Técnicas de Química Sintética/métodos , Complexos de Coordenação/química , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Estudos de Viabilidade , Humanos , Paládio/química , Estudo de Prova de Conceito , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Pirofosfatases/metabolismo , Pirrolidinonas/síntese química , Pirrolidinonas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Nudix Hidrolases
16.
Commun Chem ; 3(1): 122, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36703375

RESUMO

Fragment based methods are now widely used to identify starting points in drug discovery and generation of tools for chemical biology. A significant challenge is optimization of these weak binding fragments to hit and lead compounds. We have developed an approach where individual reaction mixtures of analogues of hits can be evaluated without purification of the product. Here, we describe experiments to optimise the processes and then assess such mixtures in the high throughput crystal structure determination facility, XChem. Diffraction data for crystals of the proteins Hsp90 and PDHK2 soaked individually with 83 crude reaction mixtures are analysed manually or with the automated XChem procedures. The results of structural analysis are compared with binding measurements from other biophysical techniques. This approach can transform early hit to lead optimisation and the lessons learnt from this study provide a protocol that can be used by the community.

17.
Chem Sci ; 11(39): 10792-10801, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34094333

RESUMO

Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10-14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.

18.
Nat Commun ; 10(1): 4910, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659163

RESUMO

AspH is an endoplasmic reticulum (ER) membrane-anchored 2-oxoglutarate oxygenase whose C-terminal oxygenase and tetratricopeptide repeat (TPR) domains present in the ER lumen. AspH catalyses hydroxylation of asparaginyl- and aspartyl-residues in epidermal growth factor-like domains (EGFDs). Here we report crystal structures of human AspH, with and without substrate, that reveal substantial conformational changes of the oxygenase and TPR domains during substrate binding. Fe(II)-binding by AspH is unusual, employing only two Fe(II)-binding ligands (His679/His725). Most EGFD structures adopt an established fold with a conserved Cys1-3, 2-4, 5-6 disulfide bonding pattern; an unexpected Cys3-4 disulfide bonding pattern is observed in AspH-EGFD substrate complexes, the catalytic relevance of which is supported by studies involving stable cyclic peptide substrate analogues and by effects of Ca(II) ions on activity. The results have implications for EGFD disulfide pattern processing in the ER and will enable medicinal chemistry efforts targeting human 2OG oxygenases.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Membrana/química , Oxigenases de Função Mista/química , Proteínas Musculares/química , Sequência de Aminoácidos , Asparagina/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Domínio Catalítico , Cristalografia , Dissulfetos/química , Dissulfetos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Conformação Proteica
19.
J Am Chem Soc ; 141(22): 8951-8968, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060360

RESUMO

Covalent probes can display unmatched potency, selectivity, and duration of action; however, their discovery is challenging. In principle, fragments that can irreversibly bind their target can overcome the low affinity that limits reversible fragment screening, but such electrophilic fragments were considered nonselective and were rarely screened. We hypothesized that mild electrophiles might overcome the selectivity challenge and constructed a library of 993 mildly electrophilic fragments. We characterized this library by a new high-throughput thiol-reactivity assay and screened them against 10 cysteine-containing proteins. Highly reactive and promiscuous fragments were rare and could be easily eliminated. In contrast, we found hits for most targets. Combining our approach with high-throughput crystallography allowed rapid progression to potent and selective probes for two enzymes, the deubiquitinase OTUB2 and the pyrophosphatase NUDT7. No inhibitors were previously known for either. This study highlights the potential of electrophile-fragment screening as a practical and efficient tool for covalent-ligand discovery.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Elétrons , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Peso Molecular , Conformação Proteica , Fatores de Tempo
20.
ACS Catal ; 9(4): 2962-2968, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30984471

RESUMO

Biosynthesis of 6-deoxy sugars, including l-fucose, involves a mechanistically complex, enzymatic 4,6-dehydration of hexose nucleotide precursors as the first committed step. Here, we determined pre- and postcatalytic complex structures of the human GDP-mannose 4,6-dehydratase at atomic resolution. These structures together with results of molecular dynamics simulation and biochemical characterization of wildtype and mutant enzymes reveal elusive mechanistic details of water elimination from GDP-mannose C5″ and C6″, coupled to NADP-mediated hydride transfer from C4″ to C6″. We show that concerted acid-base catalysis from only two active-site groups, Tyr179 and Glu157, promotes a syn 1,4-elimination from an enol (not an enolate) intermediate. We also show that the overall multistep catalytic reaction involves the fewest position changes of enzyme and substrate groups and that it proceeds under conserved exploitation of the basic (minimal) catalytic machinery of short-chain dehydrogenase/reductases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA