Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 725: 138329, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32278178

RESUMO

Nitrogen fertilisation, although a cornerstone of modern agricultural production, negatively impacts the environment through gaseous losses of nitrous oxide (N2O), a potent greenhouse gas (GHG), and ammonia (NH3), a known air pollutant. The aim of this work was to assess the feasibility of urea treated with urease inhibitors to reduce gaseous N losses in temperate grassland, while maintaining or improving productivity compared to conventional fertiliser formulations. Urease inhibitors were N-(n-butyl)-thiophosphoric triamide (NBPT) (urea + NBPT) and N-(n-propyl)-thiophosphoric triamide (NPPT) (urea+ NBPT + NPPT), while conventional fertilisers were urea and calcium ammonium nitrate (CAN). N2O emission factors were 0.06%, 0.07%, 0.09% and 0.58% from urea + NBPT, urea, urea + NBPT + NPPT and CAN, respectively, with CAN significantly higher than all the urea formulations, which were not significantly different from each other. Ammonia loss measured over one fertiliser application was significantly larger from urea, at 43%, compared with other formulations at 13.9%, 13.8% and 5.2% from urea + NBPT, urea + NBPT + NPPT and CAN, respectively. Changing fertiliser formulation had no significant impact on grass yield or N uptake in four out of five harvests. In the last harvest urea + NBPT significantly out-yielded urea, but not CAN or urea + NBPT + NPPT. Overall, urea treated with either one or both urease inhibitors significantly reduced emissions of N2O and NH3, while preserving yield quantity and quality. Therefore, changing fertiliser formulation to these products should be encouraged as a strategy to reduce GHG and air pollution from agricultural practices in temperate climate.

2.
Sci Total Environ ; 707: 134606, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31877400

RESUMO

Increased global demand for dairy produce and the abolition of EU milk quotas have resulted in expansion in dairy production across Europe and particularly in Ireland. Simultaneously, there is increasing pressure to reduce the impact of nitrogen (N) losses to air and groundwater on the environment. In order to develop grassland management strategies for grazing systems that meet environmental targets and are economically sustainable, it is imperative that individual mitigation measures for N efficiency are assessed at farm system level. To this end, we developed an excel-based N flow model simulating an Irish grass-based dairy farm, to evaluate the effect of farm management on N efficiency, N losses, production and economic performance. The model was applied to assess the effect of different strategies to achieve the increased production goals on N utilization, N loss pathways and economic performance at farm level. The three strategies investigated included increased milk production through increased grass production, through increased concentrate feeding and by applying a high profit grass-based system. Additionally, three mitigation measures; low ammonia emission slurry application, the use of urease and nitrification inhibitors and the combination of both were applied to the three strategies. Absolute N emissions were higher for all intensification scenarios (up to 124 kg N ha-1) compared to the baseline (80 kg N ha-1) due to increased animal numbers and higher feed and/or fertiliser inputs. However, some intensification strategies showed the potential to reduce the emissions per ton milk produced for some of the N-loss pathways. The model showed that the assessed mitigation measures can play an important role in ameliorating the increased emissions associated with intensification, but may not be adequate to entirely offset absolute increases. Further improvements in farm N use efficiency and alternatives to mineral fertilisers will be required to decouple production from reactive N emissions.


Assuntos
Indústria de Laticínios , Animais , Europa (Continente) , Irlanda , Leite , Nitrogênio
3.
Sci Total Environ ; 615: 1319-1331, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29751437

RESUMO

Nitrate (NO3-) leaching and nitrous oxide (N2O) emission from urine patches in grazed pastures are key sources of water and air pollution, respectively. Broadcast spraying of the nitrification inhibitor dicyandiamide (DCD) has been shown to reduce these losses, but it is expensive. As an alternative, it had been demonstrated that feeding DCD to cattle (after manual mixing with supplementary feeds) was a practical, effective and cheaper method to deliver high DCD rates within urine patches. This two-year study carried out on simulated urine patches in three application seasons (spring, summer, autumn) explored the efficacy of DCD feeding to cattle to reduce N losses from grazed pasture soil in a heavy-textured soil under temperate climatic conditions. In each application season, DCD fed to cows, then excreted with urine and applied at a rate of 30kgDCDha-1 (treatment U+DCD30-f) was as effective as powdered DCD mixed with normal urine and applied at the same rate (treatment U+DCD30) at reducing cumulative N2O-N emissions and the N2O-N emission factor (EF3, expressed as % of N applied). Increasing DCD loading within urine patches from 10 to 30kgDCDha-1 improved efficacy by significantly reducing the EF3 from 34% to 64%, which highlights that under local conditions, 10kgDCDha-1 (the recommended rate for commercial use in New Zealand) was not the optimum DCD rate to curb N2O emissions. The modelling of EF3 in this study also suggests that N mitigation should be given more attention when soil moisture is going to be high, which can be predicted with short-term weather forecasting. DCD feeding, for instance in autumn when cows are not lactating and the risk of N losses is high, could then be reduced by focusing mainly on those forecasted wet periods.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/prevenção & controle , Guanidinas/química , Dióxido de Nitrogênio/análise , Agricultura/métodos , Poluição do Ar/análise , Animais , Bovinos , Nova Zelândia , Solo , Urina/química
4.
Sci Total Environ ; 568: 327-338, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27300566

RESUMO

Cattle excreta deposited on grazed grasslands are a major source of the greenhouse gas (GHG) nitrous oxide (N2O). Currently, many countries use the IPCC default emission factor (EF) of 2% to estimate excreta-derived N2O emissions. However, emissions can vary greatly depending on the type of excreta (dung or urine), soil type and timing of application. Therefore three experiments were conducted to quantify excreta-derived N2O emissions and their associated EFs, and to assess the effect of soil type, season of application and type of excreta on the magnitude of losses. Cattle dung, urine and artificial urine treatments were applied in spring, summer and autumn to three temperate grassland sites with varying soil and weather conditions. Nitrous oxide emissions were measured from the three experiments over 12months to generate annual N2O emission factors. The EFs from urine treated soil was greater (0.30-4.81% for real urine and 0.13-3.82% for synthetic urine) when compared with dung (-0.02-1.48%) treatments. Nitrous oxide emissions were driven by environmental conditions and could be predicted by rainfall and temperature before, and soil moisture deficit after application; highlighting the potential for a decision support tool to reduce N2O emissions by modifying grazing management based on these parameters. Emission factors varied seasonally with the highest EFs in autumn and were also dependent on soil type, with the lowest EFs observed from well-drained and the highest from imperfectly drained soil. The EFs averaged 0.31 and 1.18% for cattle dung and urine, respectively, both of which were considerably lower than the IPCC default value of 2%. These results support both lowering and disaggregating EFs by excreta type.

5.
Sci Total Environ ; 560-561: 233-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27101460

RESUMO

Renovation of long-term grassland is associated with a peak in soil organic N mineralisation which, coupled with diminished plant N uptake can lead to large gaseous and leaching N losses. This study reports on the effect of ploughing and subsequent N fertilisation on the N2O emissions and DON/NO3(-) leaching, and evaluates the impact of ploughing technique on the magnitude and profile of N losses. This study was carried out on isolated grassland lysimeters of three Irish soils representing contrasting drainage properties (well-drained Clonakilty, moderately-drained Elton and poorly-drained Rathangan). Lysimeters were manually ploughed simulating conventional (CT) and minimum tillage (MT) as two treatments. Renovation of grassland increased N2O flux to a maximum of 0.9kgN2O-Nha(-1) from poorly-drained soil over four days after treatment. Although there was no difference between CT and MT in the post-ploughing period, the treatment influenced subsequent N2O after fertiliser applications. Fertilisation remained the major driver of N losses therefore reducing fertilisation rate post-planting to account for N mineralised through grassland renovation could reduce the losses in medium to longer term. Leaching was a significant loss pathway, with the cumulative drainage volume and N leached highly influenced by soil type. Overall, the total N losses (N2O+N leached) were lowest from poorly and moderately draining soil and highest for the well draining soil, reflecting the dominance of leaching on total N losses and the paramount importance of soil properties.

6.
Sci Total Environ ; 511: 362-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25553550

RESUMO

Ruminant urine patches deposited onto pasture are a significant source of greenhouse gas nitrous oxide (N2O) from livestock agriculture. Increasing food demand is predicted to lead to a rise in ruminant numbers globally, which, in turn will result in elevated levels of urine-derived N2O. Therefore mitigation strategies are urgently needed. Urine contains hippuric acid and together with one of its breakdown products, benzoic acid, has previously been linked to mitigating N2O emissions from urine patches in laboratory studies. However, the sole field study to date found no effect of hippuric and benzoic acid concentration on N2O emissions. Therefore the aim of this study was to investigate the in situ effect of these urine constituents on N2O emissions under conditions conducive to denitrification losses. Unadulterated bovine urine (0 mM of hippuric acid, U) was applied, as well as urine amended with either benzoic acid (96 mM, U+BA) or varying rates of hippuric acid (8 and 82 mM, U+HA1, U+HA2). Soil inorganic nitrogen (N) and N2O fluxes were monitored over a 66 day period. Urine application resulted in elevated N2O flux for 44 days. The largest N2O fluxes accounting for between 13% (U) and 26% (U+HA1) of total loss were observed on the day of urine application. Between 0.9 and 1.3% of urine-N was lost as N2O. Cumulative N2O loss from the control was 0.3 kg N2O-Nha(-1) compared with 11, 9, 12, and 10 kg N2O-Nha(-1) for the U, U+HA1, U+HA2, and U+BA treatments, respectively. Incremental increases in urine HA or increase in BA concentrations had no effect on N2O emissions. Although simulation of dietary manipulation to reduce N2O emissions through altering individual urine constituents appears to have no effect, there may be other manipulations such as reducing N content or inclusion of synthetic inhibitory products that warrant further investigation.


Assuntos
Poluentes Atmosféricos/química , Benzoatos/química , Óxido Nitroso/química , Agricultura , Poluentes Atmosféricos/análise , Animais , Bovinos , Desnitrificação , Gado , Modelos Químicos , Óxido Nitroso/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA