Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1862(9): 2017-2023, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29959058

RESUMO

Some peptide sequences can behave as either substrates or inhibitors of serine proteases. Working with a cyclic peptidic inhibitor of the serine protease urokinase-type plasminogen activator (uPA), we have now demonstrated a new mechanism for an inhibitor-to-substrate switch. The peptide, CSWRGLENHAAC (upain-2), is a competitive inhibitor of human uPA, but is also slowly converted to a substrate in which the bond between Arg4 and Gly5 (the P1-P1' bond) is cleaved. Substituting the P2 residue Trp3 to an Ala or substituting the P1 Arg4 residue with 4-guanidino-phenylalanine strongly increased the substrate cleavage rate. We studied the structural basis for the inhibitor-to-substrate switch by determining the crystal structures of the various peptide variants in complex with the catalytic domain of uPA. While the slowly cleaved peptides bound clearly in inhibitory mode, with the oxyanion hole blocked by the side chain of the P3' residue Glu7, peptides behaving essentially as substrates with a much accelerated rate of cleavage was observed to be bound to the enzyme in substrate mode. Our analysis reveals that the inhibitor-to-substrate switch was associated with a 7 Štranslocation of the P2 residue, and we conclude that the inhibitor-to-substrate switch of upain-2 is a result of a major conformational change in the enzyme-bound state of the peptide. This conclusion is in contrast to findings with so-called standard mechanism inhibitors in which the inhibitor-to-substrate switch is linked to minor conformational changes in the backbone of the inhibitory peptide stretch.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
2.
PLoS One ; 13(2): e0192661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420634

RESUMO

The catalytic activity of trypsin-like serine proteases is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. A trypsin-like serine protease of particular interest is urokinase-type plasminogen activator (uPA), which is involved in extracellular tissue remodeling processes. Herein, we used hydrogen/deuterium exchange mass spectrometry (HDXMS) to study regulation of activity in the catalytic domain of the murine version of uPA (muPA) by two muPA specific monoclonal antibodies. Using a truncated muPA variant (muPA16-243), containing the catalytic domain only, we show that the two monoclonal antibodies, despite binding to an overlapping epitope in the 37s and 70s loops of muPA16-243, stabilize distinct muPA16-243 conformations. Whereas the inhibitory antibody, mU1 was found to increase the conformational flexibility of muPA16-243, the stimulatory antibody, mU3, decreased muPA16-243 conformational flexibility. Furthermore, the HDXMS data unveil the existence of a pathway connecting the 70s loop to the active site region. Using alanine scanning mutagenesis, we further identify the 70s loop as an important exosite for the activation of the physiological uPA substrate plasminogen. Thus, the data presented here reveal important information about dynamics in uPA by demonstrating how various ligands can modulate uPA activity by mediating long-range conformational changes. Moreover, the results provide a possible mechanism of plasminogen activation.


Assuntos
Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Ligantes , Camundongos , Conformação Proteica , Ativador de Plasminogênio Tipo Uroquinase/química
3.
Sci Rep ; 7(1): 3385, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28611361

RESUMO

Although trypsin-like serine proteases have flexible surface-exposed loops and are known to adopt higher and lower activity conformations, structural determinants for the different conformations have remained largely obscure. The trypsin-like serine protease, urokinase-type plasminogen activator (uPA), is central in tissue remodeling processes and also strongly implicated in tumor metastasis. We solved five X-ray crystal structures of murine uPA (muPA) in the absence and presence of allosteric molecules and/or substrate-like molecules. The structure of unbound muPA revealed an unsuspected non-chymotrypsin-like protease conformation in which two ß-strands in the core of the protease domain undergoes a major antiparallel-to-parallel conformational transition. We next isolated two anti-muPA nanobodies; an active-site binding nanobody and an allosteric nanobody. Crystal structures of the muPA:nanobody complexes and hydrogen-deuterium exchange mass spectrometry revealed molecular insights about molecular factors controlling the antiparallel-to-parallel equilibrium in muPA. Together with muPA activity assays, the data provide valuable insights into regulatory mechanisms and conformational flexibility of uPA and trypsin-like serine proteases in general.


Assuntos
Conformação Proteica , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Especificidade de Anticorpos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Camundongos , Modelos Moleculares
4.
J Biol Chem ; 291(29): 15156-68, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27226628

RESUMO

A peptide segment that binds the active site of a serine protease in a substrate-like manner may behave like an inhibitor or a substrate. However, there is sparse information on which factors determine the behavior a particular peptide segment will exhibit. Here, we describe the first x-ray crystal structure of a nanobody in complex with a serine protease. The nanobody displays a new type of interaction between an antibody and a serine protease as it inserts its complementary determining region-H3 loop into the active site of the protease in a substrate-like manner. The unique binding mechanism causes the nanobody to behave as a strong inhibitor as well as a poor substrate. Intriguingly, its substrate behavior is incomplete, as 30-40% of the nanobody remained intact and inhibitory after prolonged incubation with the protease. Biochemical analysis reveals that an intra-loop interaction network within the complementary determining region-H3 of the nanobody balances its inhibitor versus substrate behavior. Collectively, our results unveil molecular factors, which may be a general mechanism to determine the substrate versus inhibitor behavior of other protease inhibitors.


Assuntos
Camelídeos Americanos/imunologia , Serina Proteases/imunologia , Anticorpos de Domínio Único/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Regiões Determinantes de Complementaridade , Cristalografia por Raios X , Humanos , Cinética , Modelos Moleculares , Conformação Proteica , Serina Proteases/química , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo , Anticorpos de Domínio Único/metabolismo , Especificidade por Substrato , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/imunologia
5.
J Mol Biol ; 427(19): 3110-22, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26281711

RESUMO

We have developed a new concept for designing peptidic protein modulators, by recombinantly fusing the peptidic modulator, with randomized residues, directly to the target protein via a linker and screening for internal modulation of the activity of the protein. We tested the feasibility of the concept by fusing a 10-residue-long, disulfide-bond-constrained inhibitory peptide, randomized in selected positions, to the catalytic domain of the serine protease murine urokinase-type plasminogen activator. High-affinity inhibitory peptide variants were identified as those that conferred to the fusion protease the lowest activity for substrate hydrolysis. The usefulness of the strategy was demonstrated by the selection of peptidic inhibitors of murine urokinase-type plasminogen activator with a low nanomolar affinity. The high affinity could not have been predicted by rational considerations, as the high affinity was associated with a loss of polar interactions and an increased binding entropy.


Assuntos
Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Entropia , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeos Cíclicos/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
6.
PLoS One ; 9(12): e115872, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25545505

RESUMO

Peptides are attracting increasing interest as protease inhibitors. Here, we demonstrate a new inhibitory mechanism and a new type of exosite interactions for a phage-displayed peptide library-derived competitive inhibitor, mupain-1 (CPAYSRYLDC), of the serine protease murine urokinase-type plasminogen activator (uPA). We used X-ray crystal structure analysis, site-directed mutagenesis, liquid state NMR, surface plasmon resonance analysis, and isothermal titration calorimetry and wild type and engineered variants of murine and human uPA. We demonstrate that Arg6 inserts into the S1 specificity pocket, its carbonyl group aligning improperly relative to Ser195 and the oxyanion hole, explaining why the peptide is an inhibitor rather than a substrate. Substitution of the P1 Arg with novel unnatural Arg analogues with aliphatic or aromatic ring structures led to an increased affinity, depending on changes in both P1 - S1 and exosite interactions. Site-directed mutagenesis showed that exosite interactions, while still supporting high affinity binding, differed substantially between different uPA variants. Surprisingly, high affinity binding was facilitated by Ala-substitution of Asp9 of the peptide, in spite of a less favorable binding entropy and loss of a polar interaction. We conclude that increased flexibility of the peptide allows more favorable exosite interactions, which, in combination with the use of novel Arg analogues as P1 residues, can be used to manipulate the affinity and specificity of this peptidic inhibitor, a concept different from conventional attempts at improving inhibitor affinity by reducing the entropic burden.


Assuntos
Peptídeos Cíclicos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Peptídeos Cíclicos/química , Ligação Proteica/efeitos dos fármacos , Inibidores de Serina Proteinase/química , Ressonância de Plasmônio de Superfície
7.
Biochemistry ; 52(40): 7114-26, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24079451

RESUMO

Serine protease catalytic activity is in many cases regulated by conformational changes initiated by binding of physiological modulators to exosites located distantly from the active site. Inhibitory monoclonal antibodies binding to such exosites are potential therapeutics and offer opportunities for elucidating fundamental allosteric mechanisms. The monoclonal antibody mU1 has previously been shown to be able to inhibit the function of murine urokinase-type plasminogen activator in vivo. We have now mapped the epitope of mU1 to the catalytic domain's 37- and 70-loops, situated about 20 Å from the S1 specificity pocket of the active site. Our data suggest that binding of mU1 destabilizes the catalytic domain and results in conformational transition into a state, in which the N-terminal amino group of Ile16 is less efficiently stabilizing the oxyanion hole and in which the active site has a reduced affinity for substrates and inhibitors. Furthermore, we found evidence for functional interactions between residues in uPA's C-terminal catalytic domain and its N-terminal A-chain, as deletion of the A-chain facilitates the mU1-induced conformational distortion. The inactive, distorted state is by several criteria similar to the E* conformation described for other serine proteases. Hence, agents targeting serine protease conformation through binding to exosites in the 37- and 70-loops represent a new class of potential therapeutics.


Assuntos
Serina Endopeptidases/imunologia , Inibidores de Serina Proteinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/imunologia , Regulação Alostérica , Animais , Anticorpos Monoclonais , Domínio Catalítico , Ativação Enzimática/efeitos dos fármacos , Epitopos/metabolismo , Fibrinolisina/metabolismo , Cinética , Camundongos , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Ativador de Plasminogênio Tipo Uroquinase/efeitos dos fármacos
8.
Biochemistry ; 51(39): 7804-11, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22950516

RESUMO

The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully active state. Both a monoclonal antibody (mU3) and a peptidic inhibitor (mupain-1--16) stabilize the active state. The epitope of mU3 is located in the 37- and 70-loops at a site homologous to exosite I of thrombin. The N-terminus((Ile16)) of muPA((16--243)) was less exposed upon binding of mU3 or mupain-1--16. In contrast, introduction of the mutations F40Y or E137A into muPA((16--243)) increased exposure of the N-terminus((Ile16)) and resulted in large changes in the thermodynamic parameters for mupain-1--16 binding. We conclude that the distorted state of muPA((16--243)) is conformationally ordered upon binding of ligands to the active site and upon binding of mU3 to the 37- and 70-loops. Our study establishes the 37- and 70-loops as a unique site for binding to compounds stabilizing the active state of serine proteases.


Assuntos
Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Regulação Alostérica , Animais , Domínio Catalítico , Ativação Enzimática , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Peptídeos Cíclicos/metabolismo , Mutação Puntual , Conformação Proteica , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA