Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 56(9): 6239-6250, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30741369

RESUMO

Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal , Depressão/fisiopatologia , Sistema Hipotálamo-Hipofisário/fisiopatologia , Fatores de Crescimento Neural/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Transdução de Sinais , Tato , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Depressão/sangue , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Tamanho do Órgão/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos Wistar , Reserpina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sacarose , Natação
2.
Brain Res Bull ; 135: 69-76, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28964775

RESUMO

Amphetamine (AMPH) and its derivatives are addictive drugs used to promote and enhance alertness, motivation, willingness, courage and wellbeing. However, their chronic use is related to memory loss, emotional instability, insomnia, psychosis and paranoia. In the last decades, modern society has included processed foods, rich in trans fatty acids (TFA), in their diet, what has been related to several health problems including increased AMPH preference and self-administration. In this scenario, physical activity appears to be useful to attenuate rewarding symptoms related to addictive drugs mainly by affecting brain neuroplasticity and neurotransmission. The current study has been developed to assess the influence of physical activity on addiction parameters of rats exposed to AMPH which were previously supplemented with hydrogenated vegetable fat (HVF), rich in TFA. After six weeks of HVF or soybean oil (SO, control group) supplementation, adult rats were conditioned with d,l-AMPH or vehicle for 14 days. Then, half of each experimental group was submitted to physical activity in treadmill running sessions (60min/day, 5 days/week) for 5 weeks. Animals were re-conditioned with AMPH or vehicle for 3 more days, to observe drug relapse. Locomotor activity and anxiety-like symptoms were observed 24h after the last AMPH reconditioning, and fatty acids composition was quantified in the ventral tegmental area, striatum and prefrontal cortex. All animals showed AMPH preference, but only SO sedentary showed drug relapse. No differences were observed in locomotor activity among groups, while HVF-supplemented group showed decreased exploration per se, and physical activity prevented this. Moreover, AMPH-HVF group showed increased anxiety-like symptoms, which were prevented by physical activity. These results indicate that HVF supplementation modifies AMPH addiction, whereas regular physical activity could be protective against both AMPH and TFA damages.


Assuntos
Ansiedade/fisiopatologia , Condicionamento Físico Animal/psicologia , Ácidos Graxos trans/uso terapêutico , Anfetamina/metabolismo , Anfetamina/farmacologia , Transtornos Relacionados ao Uso de Anfetaminas/fisiopatologia , Transtornos Relacionados ao Uso de Anfetaminas/terapia , Animais , Ansiedade/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Masculino , Atividade Motora , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar , Óleo de Soja/metabolismo , Ácidos Graxos trans/metabolismo , Verduras
3.
Behav Brain Res ; 262: 94-100, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24445072

RESUMO

Exercise has been reported to attenuate rewarding symptoms related to addictive drugs mainly by affecting the brain neuroplasticity and neurotransmission. In this study, we investigated the influence of physical exercise on the behavioral and enzymatic status related to drug relapse in rats. Animals were primarily treated with amphetamine (AMPH; 4.0 mg/kg, i.p.) or vehicle (C; NaCl 0.9% solution) in the conditioned place preference (CPP) paradigm for 14 days. Half of each experimental group was then submitted to swimming sessions (60 min/day, 5 days/week) for 5 weeks. Animals were re-exposed to AMPH- or vehicle-CPP paradigm for another 3 days, in order to observe drug relapse and anxiety-like symptoms, which were observed 24h after AMPH reconditioning in CPP, and elevated plus maze (EPM), respectively, and brain biochemical evaluations were carried out subsequently. While AMPH was related to place preference and anxiety, indicating drug addiction and abstinence symptoms, respectively, physical activity was able to prevent relapse symptoms after AMPH reconditioning, as observed through consecutive decreased CPP and anxiety-like symptoms. In addition, AMPH exposure increased reactive species (RS) generation and protein carbonyl (PC) levels together with decreased activity of catalase- and Na(+)K(+)-ATPase in hippocampus. On the other hand, while all AMPH-induced effects were prevented by physical activity, there was a negative correlation between PC levels (r=0.65; p<0.003) and CAT activity, and a positive correlation between RS generation and PC levels (r=0.54; r=0.52, p<0.05) with AMPH-CPP after exercise. These results indicate that exercise has a clear beneficial influence on the prevention of psychostimulant drug relapse.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Condicionamento Físico Animal , Anfetamina/administração & dosagem , Animais , Ansiedade , Biomarcadores/metabolismo , Catalase/metabolismo , Condicionamento Psicológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Ratos , Ratos Wistar , Prevenção Secundária , ATPase Trocadora de Sódio-Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA