Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 7078, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873174

RESUMO

Identifying the effects of genetic variation on the epigenome in disease-relevant cell types can help advance our understanding of the first molecular contributions of genetic susceptibility to disease onset. Here, we establish a genome-wide map of DNA methylation quantitative trait loci in CD4+ T-cells isolated from multiple sclerosis patients. Utilizing this map in a colocalization analysis, we identify 19 loci where the same haplotype drives both multiple sclerosis susceptibility and local DNA methylation. We also identify two distant methylation effects of multiple sclerosis susceptibility loci: a chromosome 16 locus affects PRDM8 methylation (a chromosome 4 region not previously associated with multiple sclerosis), and the aggregate effect of multiple sclerosis-associated variants in the major histocompatibility complex influences DNA methylation near PRKCA (chromosome 17). Overall, we present a new resource for a key cell type in inflammatory disease research and uncover new gene targets for the study of predisposition to multiple sclerosis.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Epigenoma/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Locos de Características Quantitativas/genética , Adolescente , Adulto , Células Cultivadas , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Adulto Jovem
2.
Nat Commun ; 11(1): 6129, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257666

RESUMO

The extent of microglial heterogeneity in humans remains a central yet poorly explored question in light of the development of therapies targeting this cell type. Here, we investigate the population structure of live microglia purified from human cerebral cortex samples obtained at autopsy and during neurosurgical procedures. Using single cell RNA sequencing, we find that some subsets are enriched for disease-related genes and RNA signatures. We confirm the presence of four of these microglial subpopulations histologically and illustrate the utility of our data by characterizing further microglial cluster 7, enriched for genes depleted in the cortex of individuals with Alzheimer's disease (AD). Histologically, these cluster 7 microglia are reduced in frequency in AD tissue, and we validate this observation in an independent set of single nucleus data. Thus, our live human microglia identify a range of subtypes, and we prioritize one of these as being altered in AD.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Doença de Alzheimer/genética , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Microglia/patologia , Células Mieloides , Análise de Sequência de RNA
3.
Mol Neurodegener ; 15(1): 44, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727516

RESUMO

BACKGROUND: Identified as an Alzheimer's disease (AD) susceptibility gene by genome wide-association studies, BIN1 has 10 isoforms that are expressed in the Central Nervous System (CNS). The distribution of these isoforms in different cell types, as well as their role in AD pathology still remains unclear. METHODS: Utilizing antibodies targeting specific BIN1 epitopes in human post-mortem tissue and analyzing mRNA expression data from purified microglia, we identified three isoforms expressed in neurons and astrocytes (isoforms 1, 2 and 3) and four isoforms expressed in microglia (isoforms 6, 9, 10 and 12). The abundance of selected peptides, which correspond to groups of BIN1 protein isoforms, was measured in dorsolateral prefrontal cortex, and their relation to neuropathological features of AD was assessed. RESULTS: Peptides contained in exon 7 of BIN1's N-BAR domain were found to be significantly associated with AD-related traits and, particularly, tau tangles. Decreased expression of BIN1 isoforms containing exon 7 is associated with greater accumulation of tangles and subsequent cognitive decline, with astrocytic rather than neuronal BIN1 being the more likely culprit. These effects are independent of the BIN1 AD risk variant. CONCLUSIONS: Exploring the molecular mechanisms of specific BIN1 isoforms expressed by astrocytes may open new avenues for modulating the accumulation of Tau pathology in AD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Microglia/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Brain Behav Immun ; 83: 180-191, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604143

RESUMO

Microglia are resident immune cells of the central nervous system (CNS). The exact role of microglia in CNS disorders is not clear due to lack of tools to discriminate between microglia and infiltrating myeloid cells. Here, we present a novel reporter mouse model targeting a microglia-specific marker, TMEM119, for studying microglia in health and disease. By placing a reporter cassette (GSG-3xFlag-P2A-tdTomato) between the coding sequence of exon 2 and 3'UTR of the Tmem119 gene using CRISPR/Cas9 technology, we generated a Tmem119-tdTomato knock-in mouse strain. Gene expression assay showed no difference of endogenous Tmem119 in the CNS of Tmem119tdTomato/+ relative to wild-type mice. The cells expressing tdTomato were recognized by immunofluorescence staining using commercially available anti-TMEM119 antibodies. Additionally, immunofluorescence and flow cytometry techniques revealed that tdTomato+ cells are detected throughout the CNS, but not in peripheral tissues of Tmem119tdTomato/+ mice. Aging does not influence TMEM119 expression as tdTomato+ cells were detectable in the CNS of older mice (300 and 540 days old). Further immunofluorescence characterization shows that tdTomato+ cells colocalize with Iba1+ cells in the brain, but not with neurons, astrocytes or oligodendrocytes. Moreover, flow cytometry analysis of brain tissues of adult mice demonstrates that the majority of microglia CD45loCD11b+ cells (96.3%) are tdTomato-positive; and a minority of infiltrating CD45hiCD11b+ myeloid cells (5.3%) are also tdTomato-positive, which we further characterized and found that tdTomato expression is in part of choroid plexus macrophages but not in meningeal and perivascular macrophages. Functionally, using an acute injury model, we measured time-lapse activation of tdTomato-labeled microglia by transcranial two-photon microscopy in live Tmem119tdTomato/+ mice. Taken together, the Tmem119-tdTomato reporter mouse model is a valuable tool to specifically study the role of microglia in health and disease.


Assuntos
Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microglia/metabolismo , Modelos Animais , Animais , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA