Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 601(7893): 380-387, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046607

RESUMO

Nitrogen dioxide (NO2) is an important contributor to air pollution and can adversely affect human health1-9. A decrease in NO2 concentrations has been reported as a result of lockdown measures to reduce the spread of COVID-1910-20. Questions remain, however, regarding the relationship of satellite-derived atmospheric column NO2 data with health-relevant ambient ground-level concentrations, and the representativeness of limited ground-based monitoring data for global assessment. Here we derive spatially resolved, global ground-level NO2 concentrations from NO2 column densities observed by the TROPOMI satellite instrument at sufficiently fine resolution (approximately one kilometre) to allow assessment of individual cities during COVID-19 lockdowns in 2020 compared to 2019. We apply these estimates to quantify NO2 changes in more than 200 cities, including 65 cities without available ground monitoring, largely in lower-income regions. Mean country-level population-weighted NO2 concentrations are 29% ± 3% lower in countries with strict lockdown conditions than in those without. Relative to long-term trends, NO2 decreases during COVID-19 lockdowns exceed recent Ozone Monitoring Instrument (OMI)-derived year-to-year decreases from emission controls, comparable to 15 ± 4 years of reductions globally. Our case studies indicate that the sensitivity of NO2 to lockdowns varies by country and emissions sector, demonstrating the critical need for spatially resolved observational information provided by these satellite-derived surface concentration estimates.


Assuntos
Atmosfera/química , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/estatística & dados numéricos , Indicadores Ambientais , Dióxido de Nitrogênio/análise , Altitude , Humanos , Ozônio/análise , Quarentena/estatística & dados numéricos , Imagens de Satélites , Fatores de Tempo
2.
Sci Adv ; 6(28): eabc2992, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32923601

RESUMO

China's policy interventions to reduce the spread of the coronavirus disease 2019 have environmental and economic impacts. Tropospheric nitrogen dioxide indicates economic activities, as nitrogen dioxide is primarily emitted from fossil fuel consumption. Satellite measurements show a 48% drop in tropospheric nitrogen dioxide vertical column densities from the 20 days averaged before the 2020 Lunar New Year to the 20 days averaged after. This decline is 21 ± 5% larger than that from 2015 to 2019. We relate this reduction to two of the government's actions: the announcement of the first report in each province and the date of a province's lockdown. Both actions are associated with nearly the same magnitude of reductions. Our analysis offers insights into the unintended environmental and economic consequences through reduced economic activities.

3.
Atmos Meas Tech ; 13(5)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32670429

RESUMO

NASA's Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ, conducted in 2011-2014) campaign in the United States and the joint NASA and National Institute of Environmental Research (NIER) Korea-United States Air Quality Study (KORUS-AQ, conducted in 2016) in South Korea were two field study programs that provided comprehensive, integrated datasets of airborne and surface observations of atmospheric constituents, including nitrogen dioxide (NO2), with the goal of improving the interpretation of spaceborne remote sensing data. Various types of NO2 measurements were made, including in situ concentrations and column amounts of NO2 using ground- and aircraft-based instruments, while NO2 column amounts were being derived from the Ozone Monitoring Instrument (OMI) on the Aura satellite. This study takes advantage of these unique datasets by first evaluating in situ data taken from two different instruments on the same aircraft platform, comparing coincidently sampled profile-integrated columns from aircraft spirals with remotely sensed column observations from ground-based Pandora spectrometers, intercomparing column observations from the ground (Pandora), aircraft (in situ vertical spirals), and space (OMI), and evaluating NO2 simulations from coarse Global Modeling Initiative (GMI) and high-resolution regional models. We then use these data to interpret observed discrepancies due to differences in sampling and deficiencies in the data reduction process. Finally, we assess satellite retrieval sensitivity to observed and modeled a priori NO2 profiles. Contemporaneous measurements from two aircraft instruments that likely sample similar air masses generally agree very well but are also found to differ in integrated columns by up to 31.9 %. These show even larger differences with Pandora, reaching up to 53.9 %, potentially due to a combination of strong gradients in NO2 fields that could be missed by aircraft spirals and errors in the Pandora retrievals. OMI NO2 values are about a factor of 2 lower in these highly polluted environments due in part to inaccurate retrieval assumptions (e.g., a priori profiles) but mostly to OMI's large footprint (> 312 km2).

4.
Environ Sci Technol ; 53(21): 12594-12601, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31601103

RESUMO

The TROPOspheric Monitoring Instrument (TROPOMI) is used to derive top-down NOX emissions for two large power plants and three megacities in North America. We first re-process the vertical column NO2 with an improved air mass factor to correct for a known systematic low bias in the operational retrieval near urban centers. For the two power plants, top-down NOX emissions agree to within 10% of the emissions reported by the power plants. We then derive top-down NOX emissions rates for New York City, Chicago, and Toronto, and compare them to projected bottom-up emissions inventories. In this analysis of 2018 NOX emissions, we find a +22% overestimate for New York City, a -21% underestimate in Toronto, and good agreement in Chicago in the projected bottom-up inventories when compared to the top-down emissions. Top-down NOX emissions also capture intraseasonal variability, such as the weekday versus weekend effect (emissions are +45% larger on weekdays versus weekends in Chicago). Finally, we demonstrate the enhanced capabilities of TROPOMI, which allow us to derive a NOX emissions rate for Chicago using a single overpass on July 7, 2018. The large signal-to-noise ratio of TROPOMI is well-suited for estimating NOX emissions from relatively small sources and for sub-seasonal timeframes.


Assuntos
Poluentes Atmosféricos , Chicago , Cidades , Monitoramento Ambiental , Cidade de Nova Iorque , América do Norte , Centrais Elétricas , Estados Unidos
5.
Sci Total Environ ; 695: 133805, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31419680

RESUMO

Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006-2017 are inferred by combining satellite-derived NOX emissions with bottom-up city-specific NOX-to-CO2 emission ratios. A statistical model is fit to a collection NO2 plumes observed from the Ozone Monitoring Instrument (OMI), and is used to calculate top-down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to 2017 (-17% in Miami to -58% in Los Angeles), and are generally consistent with long-term trends of bottom-up inventories (-25% in Miami to -49% in Los Angeles), but there are some interannual discrepancies. City-specific NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ratios have decreased by ~40% nationwide (-24% to -51% for our studied cities), which is attributed to a faster reduction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred OMI-based top-down CO2 emissions trends vary between +7% in Dallas to -31% in Phoenix. For 2017, we report annual fossil-fuel CO2 emissions to be: Los Angeles 113 ±â€¯49 Tg/yr; New York City 144 ±â€¯62 Tg/yr; and Chicago 55 ±â€¯24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013-2016 average CO2 emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good agreement with other studies' top-down estimates. We anticipate future remote sensing instruments - with better spatial and temporal resolution - will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our method.

6.
Sci Rep ; 6: 36940, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27833145

RESUMO

The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or "brown" carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305-368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

7.
Environ Sci Technol ; 50(1): 331-7, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26642237

RESUMO

A decade (2005-2014) of observations from the Ozone Monitoring Instrument (OMI) were used to examine trends in nitrogen dioxide (NO2) and sulfur dioxide (SO2) over a large region of western Canada and the northern United States, with a focus on the Canadian oil sands. In the oil sands, primarily over an area of intensive surface mining, NO2 tropospheric vertical column densities (VCDs) are seen to be increasing by as much as 10%/year, with the location of the largest trends in a newly developing NO2 "lobe" well removed from surface monitoring stations. SO2 VCDs in the oil sands have remained approximately constant. The only other significant increase in the region was seen in NO2 over Bakken gas fields in North Dakota which showed increases of up to 5%/yr. By contrast, other locations in the region show substantial declines in both pollutants, providing strong evidence to the efficacy of environmental pollution control measures implemented by both nations. The OMI-derived trends were found to be consistent with those from the Canadian surface monitoring network, although in the case of SO2, it was necessary to apply a correction in order to remove the residual signal from volcanic eruptions present in the OMI data.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Campos de Petróleo e Gás , Dióxido de Enxofre/análise , Canadá , North Dakota
8.
Environ Sci Technol ; 47(24): 13993-4000, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24274462

RESUMO

Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.


Assuntos
Poluentes Atmosféricos/análise , Carvão Mineral , Monitoramento Ambiental/instrumentação , Ozônio/análise , Centrais Elétricas , Dióxido de Enxofre/análise , Índia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA