Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831059

RESUMO

The accurate assessment of AAV-specific pre-existing humoral immunity due to natural viral infection is critical for the efficient use of clinical gene therapy. The method described in the present study applies equivalent infection conditions to each AAV serotype (AAV1, AAV2, AAV3, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, and AAVAnc80L65). In the current study, we validated the assay by assessing AAV-neutralizing antibody titers in a limited cohort of random human donors and well-established preclinical large animal models, including dogs and non-human primates (NHPs). We achieved a rapid and accurate evaluation of neutralizing titers for each individual subject that can be used for clinical enrollment based on specific AAV serotypes and individualized selection of the most suitable AAV serotype for each specific patient.

2.
Mol Ther Methods Clin Dev ; 28: 301-311, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36851984

RESUMO

We previously described therapeutic opportunities provided by capsid- and expression cassette-optimized adeno-associated virus serotype 6 (AAV6) vectors to suppress tumor growth in both solid and metastatic mouse models by using artificial ovalbumin (OVA) immunogen. In the current study, we further elucidated the mechanism of function of a novel AAV-based vaccine loaded with the melanoma tumor-associated antigens premelanosome protein gp100, tyrosinase (Tyr), tyrosinase-related protein 1 (TRP1), and dopachrome tautomerase (TRP2). We showed that the AAV6-based vaccine creates cellular and humoral antigen-specific responses, while antigen expression at the site of vaccine injection was temporal, and the clearance of antigen coincided with T cell infiltration. Our data revealed the superior protective immune response of optimized AAV6-TRP1 compared with other self-antigens in a disease-free mouse model. We further assessed the ability of AAV6-TRP1 to protect animals from metastatic spread in the lungs and to extend animal survival by inhibiting solid tumor growth. Flow cytometry-based analysis indicated significant infiltration of CD8+ T cells and natural killer (NK) cells in the tumor site, as well as changes in the polarization of intratumoral macrophages. Altogether, our data strongly support the use of optimized AAV vectors for cancer vaccine development.

3.
Vaccine ; 40(15): 2342-2351, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35282925

RESUMO

An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.


Assuntos
COVID-19 , Rhabdoviridae , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Lipossomos , Nanopartículas , Primatas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
Sci Rep ; 10(1): 15874, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32981934

RESUMO

There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1ß, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.


Assuntos
Adesão Celular , Citocinas/biossíntese , Elastase de Leucócito/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Ativação Enzimática , Humanos , Imunidade Inata , Integrinas/metabolismo , Macrófagos/imunologia , Metaloproteinases da Matriz/metabolismo , Quinases da Família src/metabolismo
5.
Hum Gene Ther ; 31(19-20): 1124-1131, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32495655

RESUMO

Adeno-associated virus (AAV)-based gene therapy is undergoing major expansion into clinical practice, with two treatments currently being granted Food and Drug Administration (FDA) approval. However, the presence of pre-existing neutralizing antibodies (NAB) is one of the significant hurdles for the clinical application of AAV vectors that significantly limits the patient population, which benefits from the treatment. A reliable diagnostic to evaluate the patient's seropositivity is required to ensure the effectiveness of the AAV-mediated therapeutic. Here, we describe a simple method for the determination of AAV NAB activity based on our finding that Compound C makes HEK293 cell highly permissive for infection by 10 commonly used AAV serotypes.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Bioensaio/métodos , Dependovirus/imunologia , Luciferases/metabolismo , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Dependovirus/genética , Dependovirus/metabolismo , Células HEK293 , Humanos , Luciferases/genética , Testes de Neutralização , Sorogrupo , Transdução Genética
6.
Mol Ther Oncolytics ; 15: 166-177, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31720373

RESUMO

We have previously shown that an AAV6-based vaccine generates high levels of antigen-specific CD8+ T cells. Further modifications described here led to significantly increased levels of antigen-specific CD8+ and CD4+ T cells, enhanced formation of memory cells, and superior antigen-specific killing capacity in a murine model. By tracking reporter-gene-positive dendritic cells, we showed that they were directly targeted with modified AAV6 in vivo. Our vaccine's anti-cancer potential was evaluated with the antigen ovalbumin against a B16F10 melanoma cell line stably expressing ovalbumin. The vaccination showed superior protection in a murine model of metastatic melanoma. The vaccination significantly delayed solid tumor growth but did not completely prevent tumor development. We show that tumors in immunized mice escaped vaccine-induced killing by losing ovalbumin expression. The vaccine induced massive tumor infiltration with NK and CD8+ T cells with upregulated PD-1 expression. Thus, a vaccination of a combination of anti-PD-1 antibodies demonstrated significant improvement in the treatment efficacy. To summarize, we showed that a bioengineered AAV6-based vaccine elicits strong and long-lasting cellular and humoral responses against an encoded antigen. To increase AAV vaccine efficiency and mitigate tumor escape through antigen loss, we intended to target several antigens in combination with treatments targeting the tumor microenvironment.

7.
J Biol Chem ; 294(16): 6240-6252, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833329

RESUMO

α1-Antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at position 342 in the mature protein, resulting in the Z mutation of the AAT gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes, causing a toxic gain of function. ERdj3 is an ER luminal DnaJ homologue, which, along with calreticulin, directly interacts with misfolded ZAAT. We hypothesize that depletion of each of these chaperones will change the fate of ZAAT polymers. Our study demonstrates that calreticulin modulation reveals a novel ZAAT degradation mechanism mediated by exosomes. Using human PiZZ hepatocytes and K42, a mouse calreticulin-deficient fibroblast cell line, our results show ERdj3 and calreticulin directly interact with ZAAT in PiZZ hepatocytes. Silencing calreticulin induces calcium independent ZAAT-ERdj3 secretion through the exosome pathway. This co-secretion decreases ZAAT aggregates within the ER of hepatocytes. We demonstrate that calreticulin has an inhibitory effect on exosome-mediated ZAAT-ERdj3 secretion. This is a novel ZAAT degradation process that involves a DnaJ homologue chaperone bound to ZAAT. In this context, calreticulin modulation may eliminate the toxic gain of function associated with aggregation of ZAAT in lung and liver, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease.


Assuntos
Calreticulina/biossíntese , Exossomos/metabolismo , Mutação de Sentido Incorreto , Proteólise , alfa 1-Antitripsina/metabolismo , Substituição de Aminoácidos , Animais , Calreticulina/genética , Linhagem Celular , Exossomos/genética , Exossomos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia
8.
Am J Respir Cell Mol Biol ; 57(2): 238-247, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28362108

RESUMO

Alpha-1 antitrypsin (AAT) deficiency-associated emphysema is largely attributed to insufficient inhibition of neutrophil elastase released from neutrophils. Correcting AAT levels using augmentation therapy only slows disease progression, and that suggests a more complex process of lung destruction. Because alveolar macrophages (Mɸ) express AAT, we propose that the expression and intracellular accumulation of mutated Z-AAT (the most common mutation) compromises Mɸ function and contributes to emphysema development. Extracellular matrix (ECM) degradation is a hallmark of emphysema pathology. In this study, Mɸ from individuals with Z-AAT (Z-Mɸ) have greater proteolytic activity on ECM than do normal Mɸ. This abnormal Z-Mɸ activity is not abrogated by supplementation with exogenous AAT and is likely the result of cellular dysfunction induced by intracellular accumulation of Z-AAT. Using pharmacologic inhibitors, we show that several classes of proteases are involved in matrix degradation by Z-Mɸ. Importantly, compared with normal Mɸ, the membrane-bound serine protease, matriptase, is present in Z-Mɸ at higher levels and contributes to their proteolytic activity on ECM. In addition, we identified matrix metalloproteinase (MMP)-14, a membrane-anchored metalloproteinase, as a novel substrate for matriptase, and showed that matriptase regulates the levels of MMP-14 on the cell surface. Thus, high levels of matriptase may contribute to increased ECM degradation by Z-Mɸ, both directly and through MMP-14 activation. In summary, the expression of Z-AAT in Mɸ confers increased proteolytic activity on ECM. This proteolytic activity is not rescued by exogenous AAT supplementation and could thus contribute to augmentation resistance in AAT deficiency-associated emphysema.


Assuntos
Macrófagos Alveolares/enzimologia , Serina Endopeptidases/fisiologia , Deficiência de alfa 1-Antitripsina/fisiopatologia , alfa 1-Antitripsina/genética , Adulto , Idoso , Células Cultivadas , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Indução Enzimática , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Metaloproteinase 14 da Matriz/metabolismo , Pessoa de Meia-Idade , Monócitos/patologia , Mutação , Enfisema Pulmonar/enzimologia , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Serina Endopeptidases/biossíntese , Serina Endopeptidases/genética , Regulação para Cima , Adulto Jovem , alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/farmacologia , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/genética
9.
J Cell Biochem ; 118(10): 3090-3101, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28419579

RESUMO

Alpha-1-antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at amino acid 342 in the mature protein, resulting in the Z mutation of the alpha-1-antitrypsin gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes and monocytes, causing a toxic gain of function. Retained ZAAT is eliminated by ER-associated degradation and autophagy. We hypothesized that alpha-1-antitrypsin (AAT)-interacting proteins play critical roles in quality control of human AAT. Using co-immunoprecipitation, we identified ERdj3, an ER-resident Hsp40 family member, as a part of the AAT trafficking network. Depleting ERdj3 increased the rate of ZAAT degradation in hepatocytes by redirecting ZAAT to the ER calreticulin-EDEM1 pathway, followed by autophagosome formation. In the Huh7.5 cell line, ZAAT ER clearance resulted from enhancing ERdj3-mediated ZAAT degradation by silencing ERdj3 while simultaneously enhancing autophagy. In this context, ERdj3 suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease. J. Cell. Biochem. 118: 3090-3101, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteólise , alfa 1-Antitripsina/metabolismo , Linhagem Celular , Retículo Endoplasmático/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , alfa 1-Antitripsina/genética
10.
PLoS One ; 12(3): e0172983, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301499

RESUMO

Alpha-1 antitrypsin deficiency (AATD) is an inherited disorder characterized by early-onset emphysema and liver disease. The most common disease-causing mutation is a single amino acid substitution (Glu/Lys) at amino acid 342 of the mature protein, resulting in disruption of the 290-342 salt bridge (an electrophoretic abnormality defining the mutation [Z allele, or ZAAT]), protein misfolding, polymerization, and accumulation in the endoplasmic reticulum of hepatocytes and monocytes. The Z allele causes a toxic gain of function, and the E3 ubiquitin ligase gp78 promotes degradation and increased solubility of endogenous ZAAT. We hypothesized that the accumulation of ZAAT is influenced by modulation of gp78 E3 ligase and SVIP (small VCP-interacting protein) interaction with p97/VCP in ZAAT-expressing hepatocytes. We showed that the SVIP inhibitory effect on ERAD due to overexpression causes the accumulation of ZAAT in a human Z hepatocyte-like cell line (AT01). Overexpression of gp78, as well as SVIP suppression, induces gp78-VCP/p97 interaction in AT01 cells. This interaction leads to retro-translocation of ZAAT and reduction of the SVIP inhibitory role in ERAD. In this context, overexpression of gp78 or SVIP suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Receptores do Fator Autócrino de Motilidade/antagonistas & inibidores , alfa 1-Antitripsina/metabolismo , Linhagem Celular , Estresse do Retículo Endoplasmático , Humanos , Mutação , Proteínas de Ligação a Fosfato , Transporte Proteico , Reação em Cadeia da Polimerase em Tempo Real , alfa 1-Antitripsina/genética
11.
Age (Dordr) ; 35(4): 1061-75, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22639176

RESUMO

Recently, we showed that administration of the angiotensin-converting enzyme inhibitor enalapril to aged rats attenuated muscle strength decline and mitigated apoptosis in the gastrocnemius muscle. The aim of the present study was to investigate possible mechanisms underlying the muscle-protective effects of enalapril. We also sought to discern the effects of enalapril mediated by nitric oxide (NO) from those independent of this signaling molecule. Eighty-seven male Fischer 344 × Brown Norway rats were randomly assigned to receive enalapril (n = 23), the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; n = 22), enalapril + L-NAME (n = 19), or placebo (n = 23) from 24 to 27 months of age. Experiments were performed on the tibialis anterior muscle. Total NOS activity and the expression of neuronal, endothelial, and inducible NOS isoforms (nNOS, eNOS, and iNOS) were determined to investigate the effects of enalapril on NO signaling. Transcript levels of tumor necrosis factor-alpha (TNF-α) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) were assessed to explore actions of enalapril on inflammation and mitochondrial biogenesis, respectively. Protein expression of energy-sensing and insulin signaling mediators, including protein kinase B (Akt-1), phosphorylated Akt-1 (pAkt-1), mammalian target of rapamycin (mTOR), AMP-activated protein kinase subunit alpha (AMPKα), phosphorylated AMPKα (pAMPKα), and the glucose transporter GLUT-4, was also determined. Finally, the generation of hydrogen peroxide (H2O2) was quantified in subsarcolemmal (SSM) and intermyofibrillar (IFM) mitochondria. Enalapril increased total NOS activity, which was prevented by L-NAME co-administration. eNOS protein content was enhanced by enalapril, but not by enalapril + L-NAME. Gene expression of iNOS was down-regulated by enalapril either alone or in combination with L-NAME. In contrast, protein levels of nNOS were unaltered by treatments. The mRNA abundance of TNF-α was reduced by enalapril relative to placebo, with no differences among any other group. PCG-1α gene expression was unaffected by enalapril and lowered by enalapril + L-NAME. No differences in protein expression of Akt-1, pAkt-1, AMPKα, pAMPKα, or GLUT-4 were detected among groups. However, mTOR protein levels were increased by enalapril compared with placebo. Finally, all treatment groups displayed reduced SSM, but not IFM H2O2 production relative to placebo. Our data indicate that enalapril induces a number of metabolic adaptations in aged skeletal muscle. These effects result from the concerted modulation of NO and angiotensin II signaling, rather than from a dichotomous action of enalapril on the two pathways. Muscle protection by enalapril administered late in life appears to be primarily mediated by mitigation of oxidative stress and pro-inflammatory signaling.


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Enalapril/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Animais , Apoptose , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , NG-Nitroarginina Metil Éster/administração & dosagem , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos F344
12.
Am J Physiol Cell Physiol ; 299(6): C1541-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20861464

RESUMO

Activated arginase has been implicated in many diseases including cancer, immune cell dysfunction, infections, and vascular disease. Enhanced arginase activity has been reported in lungs of patients with pulmonary artery hypertension. We used hypoxia as a model for pulmonary hypertension and studied the effect of exposure to hypoxia on arginase activity in human lung microvascular endothelial cells (HMVEC). Hypoxia induces upregulation of arginase activity as well as mRNA and protein levels of arginase II (Arg II), the only arginase isoform we were able to identify in HMVEC. In endothelial cells, arginase shares and competes for the substrate l-arginine with nitric oxide (NO) synthase (NOS). Through regulation of substrate availability for NOS, arginase is able to modulate NO production. To evaluate the role of Arg II in regulation of NO production under hypoxia, we compared NO output (RFL-6 reporter assay) in cells with normal and silenced Arg II. Exposure to hypoxia led to an increase in NO levels produced by HMVEC. Inhibition of Arg II by specific small interfering RNA or by the pharmacological inhibitor BEC additionally enhanced the levels of NO. Another possible role for activated arginase is involvement in regulation of cell proliferation. However, we showed that hypoxia decreased cell proliferation and upregulated Arg II did not have an effect on cell proliferation. Since hypoxia-inducible factors (HIF) are a family of transcriptional factors activated by hypoxia, we tested the possibility of involvement of HIF-1 and HIF-2 in regulation of Arg II under hypoxia. The silencing of HIF-2 but not HIF-1 prevented the activation of Arg II by hypoxia.


Assuntos
Arginase/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células Endoteliais/enzimologia , Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/enzimologia , Arginase/análise , Arginase/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácidos Borônicos/farmacologia , Hipóxia Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/genética , Fator 1 Induzível por Hipóxia/genética , Pulmão/irrigação sanguínea , Pulmão/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/genética , Regulação para Cima
13.
Mol Cell Biochem ; 343(1-2): 211-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20563744

RESUMO

Arginase is an enzyme which converts arginine to ornithine and urea. Recently, arginase has been implicated in many physiological and pathological processes including vascular diseases. Inhibition of arginase activity by pharmacological inhibitors is a useful tool to study the biology of arginases and their possible role in therapy. There are several arginase-specific inhibitors commercially available. Herein, we show that some of these inhibitors lead to an increase in arginase II protein level and activity. These effects should be anticipated when these inhibitors are in use or during the testing of new arginase inhibitors.


Assuntos
Arginase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Endotélio Vascular/enzimologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
14.
Am J Physiol Cell Physiol ; 295(5): C1183-90, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18784379

RESUMO

Elevated levels of serum uric acid (UA) are commonly associated with primary pulmonary hypertension but have generally not been thought to have any causal role. Recent experimental studies, however, have suggested that UA may affect various vasoactive mediators. We therefore tested the hypothesis that UA might alter nitric oxide (NO) levels in pulmonary arterial endothelial cells (PAEC). In isolated porcine pulmonary artery segments (PAS), UA (7.5 mg/dl) inhibits acetylcholine-induced vasodilation. The incubation of PAEC with UA caused a dose-dependent decrease in NO and cGMP production stimulated by bradykinin or Ca(2+)-ionophore A23187. We explored cellular mechanisms by which UA might cause reduced NO production focusing on the effects of UA on the l-arginine-endothelial NO synthase (eNOS) and l-arginine-arginase pathways. Incubation of PAEC with different concentrations of UA (2.5-15 mg/dl) for 24 h did not affect l-[(3)H]arginine uptake or activity/expression of eNOS. However, PAEC incubated with UA (7.5 mg/dl; 24 h) released more urea in culture media than control PAEC, suggesting that arginase activation might be involved in the UA effect. Kinetic analysis of arginase activity in PAEC lysates and rat liver and kidney homogenates demonstrated that UA activated arginase by increasing its affinity for l-arginine. An inhibitor of arginase (S)-(2-boronoethyl)-l-cysteine prevented UA-induced reduction of A23187-stimulated cGMP production by PAEC and abolished UA-induced inhibition of acetylcholine-stimulated vasodilation in PAS. We conclude that UA-induced arginase activation is a potential mechanism for reduction of NO production in PAEC.


Assuntos
Arginase/metabolismo , Células Endoteliais/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/enzimologia , Ácido Úrico/metabolismo , Vasodilatação , Animais , Arginase/genética , Arginina/metabolismo , Ácidos Borônicos/farmacologia , Bradicinina/metabolismo , Calcimicina/farmacologia , Células Cultivadas , GMP Cíclico/metabolismo , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Cinética , Artéria Pulmonar/efeitos dos fármacos , Ratos , Suínos , Regulação para Cima , Ureia/metabolismo , Vasodilatação/efeitos dos fármacos
15.
Br J Pharmacol ; 148(5): 732-40, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16715118

RESUMO

1. Myristoylated pseudosubstrate of PKCzeta (mPS) - a synthetic myristoylated peptide with a sequence (13 amino acids) mimicking the endogenous PKCzeta pseudosubstrate region -- is considered a selective cell-permeable inhibitor of PKCzeta. We present strong evidence that in endothelial cells the action of mPS is not limited to inhibition of PKC activity and that myristoylation of certain peptides can activate eNOS (endothelial nitric oxide synthase) through Akt phosphorylation. 2. mPS at micromolar concentrations (1-10 microM) induced profound phosphorylation of eNOS, Akt, ERK 1/2, and p38 MAPK in cultured pulmonary artery endothelial cells (PAEC). The same changes were observed after treatment of PAEC with a myristoylated scrambled version of mPS (mScr), whereas a cell-permeable version of PKCzeta pseudosubstrate fused to the HIV-TAT membrane-translocating peptide did not induce analogous changes, suggesting that myristoylation confers new properties on the peptides consisting of activation of different signaling pathways in endothelial cells. 3. In addition to mPS and mScr, a number of other myristoylated peptides induced phosphorylation of eNOS suggesting that myristoylation of peptides can activate eNOS by mechanisms unrelated to inhibition of PKC. All active myristoylated peptides contained basic amino acids motif and were longer than six amino acids. 4. Activation of eNOS by myristoylated peptides was dependent on the PI3K/Akt pathway and the rise of intracellular calcium and was associated with an elevation of cGMP levels in PAEC and with relaxation of precontracted isolated pulmonary artery segments. 5. Myristoylated peptides can be considered a new class of activators of NO production in endothelial cells and that using mPS as a specific inhibitor of PKC should be done with caution, especially in endothelial cells.


Assuntos
Células Endoteliais/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Animais , Cálcio/fisiologia , Células Cultivadas , GMP Cíclico/biossíntese , Humanos , Isoenzimas/química , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação/efeitos dos fármacos , Placebos/farmacologia , Proteína Quinase C/química , Proteína Quinase C/farmacologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Suínos , Vasodilatação/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Kidney Int ; 67(5): 1739-42, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15840020

RESUMO

BACKGROUND: Hyperuricemia has been linked to cardiovascular and renal diseases, possibly through the generation of reactive oxygen species (ROS) and subsequent endothelial dysfunction. The enzymatic effect of xanthine oxidase is the production of ROS and uric acid. Studies have shown that inhibiting xanthine oxidase with allopurinol can reverse endothelial dysfunction. Furthermore, rat studies have shown that hyperuricemia-induced hypertension and vascular disease is at least partially reversed by the supplementation of the nitric oxide synthase (NOS) substrate, L-arginine. Therefore, we hypothesized that uric acid induces endothelial dysfunction by inhibiting nitric oxide production. METHODS: Hyperuricemia was induced in male Sprague-Dawley rats with an uricase inhibitor, oxonic acid, by gavage; control rats received vehicle. Allopurinol was placed in drinking water to block hyperuricemia. Rats were randomly divided into four groups: (1) control, (2) allopurinol only, (3) oxonic acid only, and (4) oxonic acid + allopurinol. Rats were sacrificed at 1 and 7 days, and their serum analyzed for serum uric acid and nitrites/nitrates concentrations. The effect of uric acid on nitric oxide production was also determined in bovine aortic endothelial cells. RESULTS: Oxonic acid induced mild hyperuricemia at both 1 and 7 days (P < 0.05). Allopurinol reversed the hyperuricemia at 7 days (P < .001). Serum nitrites and nitrates (NO(X)) were reduced in hyperuricemic rats at both 1 and 7 days (P < .001). Allopurinol slightly reversed the decrease in NO(X) at 1 day and completely at 7 days (P < .001). There was a direct linear correlation between serum uric acid and NO(X) (R(2)= 0.56) and a trend toward higher systolic blood pressure in hyperuricemic rats (P= NS). Uric acid was also found to inhibit both basal and vascular endothelial growth factor (VEGF)-induced nitric oxide production in bovine aortic endothelial cells. CONCLUSION: Hyperuricemic rats have a decrease in serum nitric oxide which is reversed by lowering uric acid levels. Soluble uric acid also impairs nitric oxide generation in cultured endothelial cells. Thus, hyperuricemia induces endothelial dysfunction; this may provide insight into a pathogenic mechanism by which uric acid may induce hypertension and vascular disease.


Assuntos
Endotélio Vascular/fisiopatologia , Hiperuricemia/fisiopatologia , Animais , Bovinos , Células Cultivadas , Humanos , Técnicas In Vitro , Masculino , Óxido Nítrico/biossíntese , Ratos , Ratos Sprague-Dawley
17.
Am J Physiol Lung Cell Mol Physiol ; 286(5): L974-83, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14695118

RESUMO

Pertussis toxin (PTX) induces activation of l-arginine transport in pulmonary artery endothelial cells (PAEC). The effects of PTX on l-arginine transport appeared after 6 h of treatment and reached maximal values after treatment for 12 h. PTX-induced changes in l-arginine transport were not accompanied by changes in expression of cationic amino acid transporter (CAT)-1 protein, the main l-arginine transporter in PAEC. Unlike holotoxin, the beta-oligomer-binding subunit of PTX did not affect l-arginine transport in PAEC, suggesting that Galpha(i) ribosylation is an important step in the activation of l-arginine transport by PTX. An activator of adenylate cyclase, forskolin, and an activator of protein kinase A (PKA), Sp-cAMPS, did not affect l-arginine transport in PAEC. In addition, inhibitors of PKA or adenylate cyclase did not change the activating effect of PTX on l-arginine uptake. Long-term treatment with PTX (18 h) induced a 40% decrease in protein kinase C (PKC)-alpha but did not affect the activities of PKC-epsilon and PKC-zeta in PAEC. An activator of PKC-alpha, phorbol 12-myristate 13-acetate, abrogated the activation of l-arginine transport in PAEC treated with PTX. Incubation of PTX-treated PAEC with phorbol 12-myristate 13-acetate in combination with an inhibitor of PKC-alpha (Go 6976) restored the activating effects of PTX on l-arginine uptake, suggesting PTX-induced activation of l-arginine transport is mediated through downregulation of PKC-alpha. Measurements of nitric oxide (NO) production by PAEC revealed that long-term treatment with PTX induced twofold increases in the amount of NO in PAEC. PTX also increased l-[(3)H]citrulline production from extracellular l-[(3)H]arginine without affecting endothelial NO synthase activity. These results demonstrate that PTX increased NO production through activation of l-arginine transport in PAEC.


Assuntos
Arginina/metabolismo , AMP Cíclico/análogos & derivados , Endotélio Vascular/metabolismo , Toxina Pertussis/farmacologia , Proteína Quinase C/metabolismo , Artéria Pulmonar , Animais , Transporte Biológico/efeitos dos fármacos , Transportador 1 de Aminoácidos Catiônicos/efeitos dos fármacos , Transportador 1 de Aminoácidos Catiônicos/metabolismo , Células Cultivadas , Citrulina/metabolismo , Colforsina/farmacologia , AMP Cíclico/farmacologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Inibidores Enzimáticos/farmacologia , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C-alfa , Suínos , Tionucleotídeos/farmacologia
18.
Am J Physiol Lung Cell Mol Physiol ; 284(6): L1037-44, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12562561

RESUMO

We examined which isoforms of protein kinase C (PKC) may be involved in the regulation of cationic amino acid transporter-1 (CAT-1) transport activity in cultured pulmonary artery endothelial cells (PAEC). An activator of classical and novel isoforms of PKC, phorbol 12-myristate-13-acetate (PMA; 100 nM), inhibited CAT-1-mediated l-arginine transport in PAEC after a 1-h treatment and activated l-arginine uptake after an 18-h treatment of cells. These changes in l-arginine transport were not related to the changes in the expression of the CAT-1 transporter. The inhibitory effect of PMA on l-arginine transport was accompanied by a translocation of PKCalpha (a classical PKC isoform) from the cytosol to the membrane fraction, whereas the activating effect of PMA on l-arginine transport was accompanied by full depletion of the expression of PKCalpha in PAEC. A selective activator of Ca(2+)-dependent classical isoforms of PKC, thymeleatoxin (Thy; 100 nM; 1-h and 18-h treatments), induced the same changes in l-arginine uptake and PKCalpha translocation and depletion as PMA. The effects of PMA and Thy on l-arginine transport in PAEC were attenuated by a selective inhibitor of classical PKC isoforms Go 6976 (1 micro M). Phosphatidylinositol-3,4,5-triphosphate-dipalmitoyl (PIP; 5 micro M), which activates novel PKC isoforms, did not affect l-arginine transport in PAEC after 1-h and 18-h treatment of cells. PIP (5 micro M; 1 h) induced the translocation of PKCepsilon (a novel PKC isoform) from the cytosolic to the particulate fraction and did not affect the translocation of PKCalpha. These results demonstrate that classical isoforms of PKC are involved in the regulation of CAT-1 transport activity in PAEC. We suggest that translocation of PKCalpha to the plasma membrane induces phosphorylation of the CAT-1 transporter, which leads to inhibition of its transport activity in PAEC. In contrast, depletion of PKCalpha after long-term treatment with PMA or Thy promotes dephosphorylation of the CAT-1 transporter and activation of its activity.


Assuntos
Transportador 1 de Aminoácidos Catiônicos/metabolismo , Endotélio Vascular/enzimologia , Proteína Quinase C/metabolismo , Artéria Pulmonar/enzimologia , Sequência de Aminoácidos , Animais , Arginina/farmacocinética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carcinógenos/farmacologia , Transportador 1 de Aminoácidos Catiônicos/química , Células Cultivadas , Endotélio Vascular/citologia , Dados de Sequência Molecular , Proteína Quinase C-alfa , Proteína Quinase C-épsilon , Artéria Pulmonar/citologia , Suínos , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA