Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 20836, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460699

RESUMO

Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.


Assuntos
Transtorno Depressivo Maior , Peixe-Zebra , Humanos , Animais , Ratos , Peixe-Zebra/genética , Transcriptoma , Transtornos do Humor , Encéfalo
2.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430544

RESUMO

The Trace Amine-Associated Receptor 1 (TAAR1) is one of the six functional receptors belonging to the family of monoamine-related G protein-coupled receptors (TAAR1-TAAR9) found in humans. However, the exact biological mechanisms of TAAR1 central and peripheral action remain to be fully understood. TAAR1 is widely expressed in the prefrontal cortex and several limbic regions, interplaying with the dopamine system to modulate the reward circuitry. Recent clinical trials suggest the efficacy of TAAR1 agonists as potential novel antipsychotic agents. Here, we characterize behavioral and neurochemical phenotypes of TAAR1 knockout mice, focusing on aggression and self-grooming behavior that both strongly depend on the monoaminergic signaling and cortico-striatal and cortico-limbic circuits. Overall, we report increased aggression in these knockout mice in the resident-intruder test, accompanied by reduced self-grooming behavior in the novelty-induced grooming test, and by higher cortical serotonin (5-HT) tissue levels. Further studies are necessary to explore whether TAAR1-based therapies can become potential novel treatments for a wide range of neuropsychiatric disorders associated with aggression.


Assuntos
Genética Comportamental , Receptores Acoplados a Proteínas G , Serotonina , Animais , Camundongos , Agressão/fisiologia , Asseio Animal/fisiologia , Camundongos Knockout , Córtex Pré-Frontal/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo
3.
ACS Chem Neurosci ; 13(13): 1902-1922, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671176

RESUMO

Hallucinogenic drugs potently affect brain and behavior and have also recently emerged as potentially promising agents in pharmacotherapy. Complementing laboratory rodents, the zebrafish (Danio rerio) is a powerful animal model organism for screening neuroactive drugs, including hallucinogens. Here, we test a battery of ten novel N-benzyl-2-phenylethylamine (NBPEA) derivatives with the 2,4- and 3,4-dimethoxy substitutions in the phenethylamine moiety and the -OCH3, -OCF3, -F, -Cl, and -Br substitutions in the ortho position of the phenyl ring of the N-benzyl moiety, assessing their acute behavioral and neurochemical effects in the adult zebrafish. Overall, substitutions in the Overall, substitutions in the N-benzyl moiety modulate locomotion, and substitutions in the phenethylamine moiety alter zebrafish anxiety-like behavior, also affecting the brain serotonin and/or dopamine turnover. The 24H-NBOMe(F) and 34H-NBOMe(F) treatment also reduced zebrafish despair-like behavior. Computational analyses of zebrafish behavioral data by artificial intelligence identified several distinct clusters for these agents, including anxiogenic/hypolocomotor (24H-NBF, 24H-NBOMe, and 34H-NBF), behaviorally inert (34H-NBBr, 34H-NBCl, and 34H-NBOMe), anxiogenic/hallucinogenic-like (24H-NBBr, 24H-NBCl, and 24H-NBOMe(F)), and anxiolytic/hallucinogenic-like (34H-NBOMe(F)) drugs. Our computational analyses also revealed phenotypic similarity of the behavioral activity of some NBPEAs to that of selected conventional serotonergic and antiglutamatergic hallucinogens. In silico functional molecular activity modeling further supported the overlap of the drug targets for NBPEAs tested here and the conventional serotonergic and antiglutamatergic hallucinogens. Overall, these findings suggest potent neuroactive properties of several novel synthetic NBPEAs, detected in a sensitive in vivo vertebrate model system, the zebrafish, raising the possibility of their potential clinical use and abuse.


Assuntos
Alucinógenos , Animais , Inteligência Artificial , Comportamento Animal , Alucinógenos/química , Alucinógenos/farmacologia , Fenetilaminas/química , Fenetilaminas/farmacologia , Peixe-Zebra
4.
Sci Rep ; 11(1): 14289, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34253753

RESUMO

Long-term recurrent stress is a common cause of neuropsychiatric disorders. Animal models are widely used to study the pathogenesis of stress-related psychiatric disorders. The zebrafish (Danio rerio) is emerging as a powerful tool to study chronic stress and its mechanisms. Here, we developed a prolonged 11-week chronic unpredictable stress (PCUS) model in zebrafish to more fully mimic chronic stress in human populations. We also examined behavioral and neurochemical alterations in zebrafish, and attempted to modulate these states by 3-week treatment with an antidepressant fluoxetine, a neuroprotective omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA), a pro-inflammatory endotoxin lipopolysaccharide (LPS), and their combinations. Overall, PCUS induced severe anxiety and elevated norepinephrine levels, whereas fluoxetine (alone or combined with other agents) corrected most of these behavioral deficits. While EPA and LPS alone had little effects on the zebrafish PCUS-induced anxiety behavior, both fluoxetine (alone or in combination) and EPA restored norepinephrine levels, whereas LPS + EPA increased dopamine levels. As these data support the validity of PCUS as an effective tool to study stress-related pathologies in zebrafish, further research is needed into the ability of various conventional and novel treatments to modulate behavioral and neurochemical biomarkers of chronic stress in this model organism.


Assuntos
Ácido Eicosapentaenoico/metabolismo , Fluoxetina/farmacologia , Lipopolissacarídeos/química , Estresse Psicológico/tratamento farmacológico , Animais , Antidepressivos/farmacologia , Comportamento Animal , Modelos Animais de Doenças , Emoções , Endotoxinas/metabolismo , Neuroquímica/métodos , Norepinefrina/sangue , Fenótipo , Estresse Fisiológico , Peixe-Zebra
5.
Sci Rep ; 10(1): 19981, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203921

RESUMO

Stress-related neuropsychiatric disorders are widespread, debilitating and often treatment-resistant illnesses that represent an urgent unmet biomedical problem. Animal models of these disorders are widely used to study stress pathogenesis. A more recent and historically less utilized model organism, the zebrafish (Danio rerio), is a valuable tool in stress neuroscience research. Utilizing the 5-week chronic unpredictable stress (CUS) model, here we examined brain transcriptomic profiles and complex dynamic behavioral stress responses, as well as neurochemical alterations in adult zebrafish and their correction by chronic antidepressant, fluoxetine, treatment. Overall, CUS induced complex neurochemical and behavioral alterations in zebrafish, including stable anxiety-like behaviors and serotonin metabolism deficits. Chronic fluoxetine (0.1 mg/L for 11 days) rescued most of the observed behavioral and neurochemical responses. Finally, whole-genome brain transcriptomic analyses revealed altered expression of various CNS genes (partially rescued by chronic fluoxetine), including inflammation-, ubiquitin- and arrestin-related genes. Collectively, this supports zebrafish as a valuable translational tool to study stress-related pathogenesis, whose anxiety and serotonergic deficits parallel rodent and clinical studies, and genomic analyses implicate neuroinflammation, structural neuronal remodeling and arrestin/ubiquitin pathways in both stress pathogenesis and its potential therapy.


Assuntos
Comportamento Animal/fisiologia , Estresse Psicológico/fisiopatologia , Transcriptoma/fisiologia , Peixe-Zebra/fisiologia , Animais , Antidepressivos/farmacologia , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Feminino , Fluoxetina/farmacologia , Masculino , Estresse Psicológico/tratamento farmacológico , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA