RESUMO
The fouling of submerged surfaces detrimentally alters stratum properties. Inorganic and organic foulers alike attach to and accumulate on surfaces when the complex interaction between numerous variables governing attachment and colonization is favourable. Unlike naturally evolved solutions, industrial methods of repellence carry adverse environmental impacts. Mammal fur demonstrates high resistance to fouling; however, our understanding of the intricacies of such performance remains limited. Here, we show that the passive trait of fur to dynamically respond to an external flow field dramatically improves its anti-fouling performance over that of fibres rigidly fixed at both ends. We have previously discovered a statistically significant correlation between a group of flow- and stratum-related properties, and the quantified anti-fouling performance of immobile filaments. In this work, we improve the correlation by considering an additional physical factor, the ability of hair to flex. Our work establishes a parametric framework for the design of passive anti-fouling filamentous structures and invites other disciplines to contribute to the investigation of the anti-fouling prowess of mammalian interfaces.
Assuntos
Mamíferos , Membranas Artificiais , AnimaisRESUMO
Fouling of surfaces in prolonged contact with liquid often leads to detrimental alteration of material properties and performance. A wide range of factors which include mass transport, surface properties and surface interactions dictate whether foulants are able to adhere to a surface. Passive means of foulant rejection, such as the microscopic patterns, have been known to develop in nature. In this work, we investigate the anti-fouling behaviour of animal fur and its apparent passive resistance to fouling. We compare the fouling performance of several categories of natural and manufactured fibres, and present correlations between contamination susceptibility and physio-mechanical properties of the fibre and its environment. Lastly, we present a correlation between the fouling intensity of a fibre and the cumulative impact of multiple interacting factors declared in the form of a dimensionless group. Artificial and natural hair strands exhibit comparable anti-fouling behaviour in flow, however, the absence of flow improves the performance of some artificial fibres. Among the plethora of factors affecting the fouling of fur hair, the dimensionless groups we present herein provide the best demarcation between fibres of different origin.
Assuntos
Cabelo , Membranas Artificiais , Animais , Mamíferos , TitânioRESUMO
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.