RESUMO
Neuroligin-2 (Nlgn2) is a key synaptic adhesion protein at virtually all GABAergic synapses, which recruits GABAARs by promoting assembly of the postsynaptic gephyrin scaffold. Intriguingly, loss of Nlgn2 differentially affects subsets of GABAergic synapses, indicating that synapse-specific interactors and redundancies define its function, but the nature of these interactions remain poorly understood. Here we investigated how Nlgn2 function in hippocampal area CA1 is modulated by two proposed interaction partners, MDGA1 and MDGA2. We show that loss of MDGA1 expression, but not heterozygous deletion of MDGA2, ameliorates the abnormal cytosolic gephyrin aggregation, the reduction in inhibitory synaptic transmission and the exacerbated anxiety-related behaviour characterizing Nlgn2 knockout (KO) mice. Additionally, combined Nlgn2 and MDGA1 deletion causes an exacerbated layer-specific loss of gephyrin puncta. Given that both Nlgn2 and the MDGA1 have been correlated with many psychiatric disorders, our data support the notion that cytosolic gephyrin aggregation may represent an interesting target for novel therapeutic strategies.
Assuntos
Proteínas de Transporte , Moléculas de Adesão Celular Neuronais , Proteínas de Membrana , Camundongos Knockout , Receptores de GABA-A , Sinapses , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Sinapses/metabolismo , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Citosol/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Transmissão Sináptica , Camundongos Endogâmicos C57BL , Região CA1 Hipocampal/metabolismoRESUMO
BACKGROUND: Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS: We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS: Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS: These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas de Membrana , Proteínas do Tecido Nervoso , Sinapses , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Animais , Sinapses/metabolismo , Humanos , Fosforilação , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Camundongos , Camundongos Knockout , Encéfalo/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BLRESUMO
Autism spectrum disorder (ASD) comprises a wide range of neurodevelopment conditions primarily characterized by impaired social interaction and repetitive behavior, accompanied by a variable degree of neuropsychiatric characteristics. Synaptic dysfunction is undertaken as one of the key underlying mechanisms in understanding the pathophysiology of ASD. The excitatory/inhibitory (E/I) hypothesis is one of the most widely held theories for its pathogenesis. Shifts in E/I balance have been proven in several ASD models. In this study, we investigated three mouse lines recapitulating both idiopathic (the BTBR strain) and genetic (Fmr1 and Shank3 mutants) forms of ASD at late infancy and early adulthood. Using receptor autoradiography for ionotropic excitatory (AMPA and NMDA) and inhibitory (GABAA) receptors, we mapped the receptor binding densities in brain regions known to be associated with ASD such as prefrontal cortex, dorsal and ventral striatum, dorsal hippocampus, and cerebellum. The individual mouse lines investigated show specific alterations in excitatory ionotropic receptor density, which might be accounted as specific hallmark of each individual line. Across all the models investigated, we found an increased binding density to GABAA receptors at adulthood in the dorsal hippocampus. Interestingly, reduction in the GABAA receptor binding density was observed in the cerebellum. Altogether, our findings suggest that E/I disbalance individually affects several brain regions in ASD mouse models and that alterations in GABAergic transmission might be accounted as unifying factor.
RESUMO
The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Bainha de Mielina , Placa Amiloide , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Axônios/metabolismo , Axônios/patologia , Microglia/metabolismo , Microglia/patologia , Análise da Expressão Gênica de Célula Única , Fatores de Risco , Progressão da DoençaRESUMO
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Assuntos
Moléculas de Adesão Celular Neuronais , Giro Denteado , Potenciais Pós-Sinápticos Excitadores , Proteínas de Membrana , Proteínas do Tecido Nervoso , Transmissão Sináptica , Animais , Transtorno do Espectro Autista , Moléculas de Adesão Celular Neuronais/genética , Giro Denteado/fisiologia , Proteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genéticaRESUMO
Astrocyte-derived cholesterol supports brain cells under physiological conditions. However, in demyelinating lesions, astrocytes downregulate cholesterol synthesis, and the cholesterol that is essential for remyelination has to originate from other cellular sources. Here, we show that repair following acute versus chronic demyelination involves distinct processes. In particular, in chronic myelin disease, when recycling of lipids is often defective, de novo neuronal cholesterol synthesis is critical for regeneration. By gene expression profiling, genetic loss-of-function experiments, and comprehensive phenotyping, we provide evidence that neurons increase cholesterol synthesis in chronic myelin disease models and in patients with multiple sclerosis (MS). In mouse models, neuronal cholesterol facilitates remyelination specifically by triggering oligodendrocyte precursor cell proliferation. Our data contribute to the understanding of disease progression and have implications for therapeutic strategies in patients with MS.
Assuntos
Colesterol , Esclerose Múltipla , Bainha de Mielina , Células Precursoras de Oligodendrócitos/metabolismo , Remielinização/genética , Animais , Colesterol/biossíntese , Colesterol/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismoRESUMO
The chemical synapse is one type of cell-adhesion system that transmits information from a neuron to another neuron in the complex neuronal network in the brain. Synaptic transmission is the rate-limiting step during the information processing in the neuronal network and its plasticity is involved in cognitive functions. Thus, morphological and electrophysiological analyses of synapses are of particular importance in neuroscience research. In the current study, we applied super-resolved three-dimensional stimulated emission depletion (3D-STED) microscopy for the morphological analyses of synapses. This approach allowed us to estimate the precise number of excitatory and inhibitory synapses in the mouse hippocampal tissue. We discovered a region-specific increase in excitatory synapses in a model mouse of autism spectrum disorder, Neuroligin-3 KO, with this method. This type of analysis will open a new field in developmental neuroscience in the future.
Assuntos
Transtorno do Espectro Autista/genética , Região CA1 Hipocampal/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Proteínas de Membrana/genética , Microscopia/métodos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Sinapses/genética , Animais , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Região CA1 Hipocampal/diagnóstico por imagem , Região CA1 Hipocampal/patologia , Moléculas de Adesão Celular Neuronais/deficiência , Cognição/fisiologia , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Proteínas de Arcabouço Homer/genética , Proteínas de Arcabouço Homer/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia/instrumentação , Proteínas do Tecido Nervoso/deficiência , Neuroimagem/instrumentação , Neuroimagem/métodos , Neurônios/patologia , Sinapses/metabolismo , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologiaRESUMO
While the neural circuits mediating normal, adaptive defensive behaviors have been extensively studied, substantially less is currently known about the network mechanisms by which aberrant, pathological anxiety is encoded in the brain. Here we investigate in mice how deletion of Neuroligin-2 (Nlgn2), an inhibitory synapse-specific adhesion protein that has been associated with pathological anxiety and other psychiatric disorders, alters the communication between key brain regions involved in mediating defensive behaviors. To this end, we performed multi-site simultaneous local field potential (LFP) recordings from the basolateral amygdala (BLA), centromedial amygdala (CeM), bed nucleus of the stria terminalis (BNST), prefrontal cortex (mPFC) and ventral hippocampus (vHPC) in an open field paradigm. We found that LFP power in the vHPC was profoundly increased and was accompanied by an abnormal modulation of the synchrony of theta frequency oscillations particularly in the vHPC-mPFC-BLA circuit. Moreover, deletion of Nlgn2 increased beta and gamma frequency synchrony across the network, and this increase was associated with increased center avoidance. Local deletion of Nlgn2 in the vHPC and BLA revealed that they encode distinct aspects of this avoidance phenotype, with vHPC linked to immobility and BLA linked to a reduction in exploratory activity. Together, our data demonstrate that alterations in long-range functional connectivity link synaptic inhibition to abnormal defensive behaviors, and that both exaggerated activation of normal defensive circuits and recruitment of fundamentally distinct mechanisms contribute to this phenotype. Nlgn2 knockout mice therefore represent a highly relevant model to study the role of inhibitory synaptic transmission in the circuits underlying anxiety disorders.
Assuntos
Transtornos de Ansiedade/patologia , Comportamento Animal , Ritmo beta , Moléculas de Adesão Celular Neuronais/fisiologia , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/fisiologia , Ritmo Teta , Animais , Transtornos de Ansiedade/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
To assess complex social recognition in mice, we previously developed the SocioBox paradigm. Unexpectedly, 4 weeks after performing in the SocioBox, mice displayed robust social avoidance during Y-maze sociability testing. This unique "sociophobia" acquisition could be documented in independent cohorts. We therefore employed infrared thermography as a non-invasive method of stress-monitoring during SocioBox testing (presentation of five other mice) versus empty box. A higher Centralization Index (body/tail temperature) in the SocioBox correlated negatively with social recognition memory and, after 4 weeks, with social preference in the Y-maze. Assuming that social stimuli might be associated with characteristic thermo-responses, we exposed healthy men (N = 103) with a comparably high intelligence level to a standardized test session including two cognitive tests with or without social component (face versus pattern recognition). In some analogy to the Centralization Index (within-subject measure) used in mice, the Reference Index (ratio nose/malar cheek temperature) was introduced to determine the autonomic facial response/flushing during social recognition testing. Whereas cognitive performance and salivary cortisol were comparable across human subjects and tests, the Face Recognition Test was associated with a characteristic Reference Index profile. Infrared thermography may have potential for discriminating disturbed social behaviors.
RESUMO
Postsynaptic organizational protein complexes play central roles both in orchestrating synapse formation and in defining the functional properties of synaptic transmission that together shape the flow of information through neuronal networks. A key component of these organizational protein complexes is the family of synaptic adhesion proteins called neuroligins. Neuroligins form transsynaptic bridges with presynaptic neurexins to regulate various aspects of excitatory and inhibitory synaptic transmission. Neuroligin-2 (NLGN2) is the only member that acts exclusively at GABAergic inhibitory synapses. Altered expression and mutations in NLGN2 and several of its interacting partners are linked to cognitive and psychiatric disorders, including schizophrenia, autism, and anxiety. Research on NLGN2 has fundamentally shaped our understanding of the molecular architecture of inhibitory synapses. Here, we discuss the current knowledge on the molecular and cellular functions of mammalian NLGN2 and its role in the neuronal circuitry that regulates behavior in rodents and humans.
Assuntos
Ansiedade/metabolismo , Transtorno Autístico/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , HumanosRESUMO
The way animals respond to a stimulus depends largely on an internal comparison between the current sensation and the memory of previous stimuli and outcomes. We know little about the accuracy with which the physical properties of the stimuli influence this type of memory-based discriminative decisions. Research has focused largely on discriminations between stimuli presented in quick succession, where animals can make relative inferences (same or different; higher or lower) from trial to trial. In the current study we used a memory-based task to explore how the stimulus' physical properties, in this case tone frequency, affect auditory discrimination and generalization in mice. Mice performed ad libitum while living in groups in their home quarters. We found that the frequency distance between safe and conditioned sounds had a constraining effect on discrimination. As the safe-to-conditioned distance decreased across groups, performance deteriorated rapidly, even for frequency differences significantly larger than reported discrimination thresholds. Generalization width was influenced both by the physical distance and the previous experience of the mice, and was not accompanied by a decrease in sensory acuity. In conclusion, memory-based discriminations along a single stimulus dimension are inherently hard, reflecting a high overlap between the memory traces of the relevant stimuli. Memory-based discriminations rely therefore on wide sensory filters.
Assuntos
Aprendizagem por Discriminação/fisiologia , Generalização Psicológica/fisiologia , Memória/fisiologia , Estimulação Acústica , Animais , Percepção Auditiva/fisiologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Condicionamento Psicológico/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Discriminação da Altura Tonal/fisiologiaRESUMO
Abnormalities in synaptic inhibition play a critical role in psychiatric disorders, and accordingly, it is essential to understand the molecular mechanisms linking components of the inhibitory postsynapse to psychiatrically relevant neural circuits and behaviors. Here we study the role of IgSF9b, an adhesion protein that has been associated with affective disorders, in the amygdala anxiety circuitry. We show that deletion of IgSF9b normalizes anxiety-related behaviors and neural processing in mice lacking the synapse organizer Neuroligin-2 (Nlgn2), which was proposed to complex with IgSF9b. This normalization occurs through differential effects of Nlgn2 and IgSF9b at inhibitory synapses in the basal and centromedial amygdala (CeM), respectively. Moreover, deletion of IgSF9b in the CeM of adult Nlgn2 knockout mice has a prominent anxiolytic effect. Our data place IgSF9b as a key regulator of inhibition in the amygdala and indicate that IgSF9b-expressing synapses in the CeM may represent a target for anxiolytic therapies.
Assuntos
Tonsila do Cerebelo/metabolismo , Transtornos de Ansiedade/genética , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/metabolismo , Tonsila do Cerebelo/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Transmissão Sináptica/genéticaRESUMO
Detecting regular patterns in the environment, a process known as statistical learning, is essential for survival. Neuronal adaptation is a key mechanism in the detection of patterns that are continuously repeated across short (seconds to minutes) temporal windows. Here, we found in mice that a subcortical structure in the auditory midbrain was sensitive to patterns that were repeated discontinuously, in a temporally sparse manner, across windows of minutes to hours. Using a combination of behavioral, electrophysiological, and molecular approaches, we found changes in neuronal response gain that varied in mechanism with the degree of sound predictability and resulted in changes in frequency coding. Analysis of population activity (structural tuning) revealed an increase in frequency classification accuracy in the context of increased overlap in responses across frequencies. The increase in accuracy and overlap was paralleled at the behavioral level in an increase in generalization in the absence of diminished discrimination. Gain modulation was accompanied by changes in gene and protein expression, indicative of long-term plasticity. Physiological changes were largely independent of corticofugal feedback, and no changes were seen in upstream cochlear nucleus responses, suggesting a key role of the auditory midbrain in sensory gating. Subsequent behavior demonstrated learning of predictable and random patterns and their importance in auditory conditioning. Using longer timescales than previously explored, the combined data show that the auditory midbrain codes statistical learning of temporally sparse patterns, a process that is critical for the detection of relevant stimuli in the constant soundscape that the animal navigates through.
Assuntos
Estimulação Acústica , Vias Auditivas/fisiologia , Mesencéfalo/fisiologia , Reconhecimento Fisiológico de Modelo , Animais , Córtex Auditivo/fisiologia , Comportamento Animal , Cóclea/fisiologia , Potenciais Evocados/fisiologia , Feminino , Colículos Inferiores/fisiologia , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Som , Sinapses/fisiologiaRESUMO
Inhibitory neurotransmission plays a key role in anxiety disorders, as evidenced by the anxiolytic effect of the benzodiazepine class of γ-aminobutyric acid (GABA) receptor agonists and the recent discovery of anxiety-associated variants in the molecular components of inhibitory synapses. Accordingly, substantial interest has focused on understanding how inhibitory neurons and synapses contribute to the circuitry underlying adaptive and pathological anxiety behaviors. A key element of the anxiety circuitry is the amygdala, which integrates information from cortical and thalamic sensory inputs to generate fear and anxiety-related behavioral outputs. Information processing within the amygdala is heavily dependent on inhibitory control, although the specific mechanisms by which amygdala GABAergic neurons and synapses regulate anxiety-related behaviors are only beginning to be uncovered. Here, we summarize the current state of knowledge and highlight open questions regarding the role of inhibition in the amygdala anxiety circuitry. We discuss the inhibitory neuron subtypes that contribute to the processing of anxiety information in the basolateral and central amygdala, as well as the molecular determinants, such as GABA receptors and synapse organizer proteins, that shape inhibitory synaptic transmission within the anxiety circuitry. Finally, we conclude with an overview of current and future approaches for converting this knowledge into successful treatment strategies for anxiety disorders.
Assuntos
Tonsila do Cerebelo/fisiopatologia , Ansiedade/etiologia , Ansiedade/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Animais , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Biomarcadores , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Humanos , Terapia de Alvo Molecular , Neurônios/efeitos dos fármacos , Receptores de GABA/metabolismo , Transdução de Sinais , Sinapses/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismoRESUMO
Neuroligin-4 (Nlgn4) is a cell adhesion protein that regulates synapse organization and function. Mutations in human NLGN4 are among the causes of autism spectrum disorders. In mouse, Nlgn4 knockout (KO) perturbs GABAergic synaptic transmission and oscillatory activity in hippocampus, and causes social interaction deficits. The complex profile of cellular and circuit changes that are caused by Nlgn4-KO is still only partly understood. Using Nlgn4-KO mice, we found that Nlgn4-KO increases the power in the alpha frequency band of spontaneous network activity in the barrel cortex under urethane anesthesia in vivo. Nlgn4-KO did not affect single-whisker-induced local field potentials, but suppressed the late evoked multiunit activity in vivo. Although Nlgn4-KO did not affect evoked EPSCs in layer 4 (L4) spiny stellate cells in acute thalamocortical slices elicited by electrical stimulation of thalamocortical inputs, it caused a lower frequency of both miniature (m) IPSCs and mEPSCs, and a decrease in the number of readily releasable vesicles at GABAergic and glutamatergic connections, weakening both excitatory and inhibitory transmission. However, Nlgn4 deficit strongly suppresses glutamatergic activity, shifting the excitation-inhibition balance to inhibition. We conclude that Nlgn4-KO does not influence the incoming whisker-mediated sensory information to the barrel cortex, but modifies intracortical information processing.
Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Potenciais Evocados/genética , Neocórtex/patologia , Rede Nervosa/fisiopatologia , Neurônios/fisiologia , Vias Aferentes/patologia , Vias Aferentes/fisiopatologia , Animais , Animais Recém-Nascidos , Moléculas de Adesão Celular Neuronais/genética , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Neurotransmissores/farmacologia , Vibrissas/inervação , Imagens com Corantes Sensíveis à VoltagemRESUMO
The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95+/-). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95+/- males and females. Additionally, male PSD95+/- mice exhibited higher levels of aggression and territoriality, while female PSD95+/- mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95+/- mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95+/- mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found increased PSD93 protein expression in hippocampal synaptic enrichment preparations of PSD95+/- mice. These data suggest that both PSD95 and PSD93 are involved in processing of social stimuli and control of social behavior. This important role may be partly assured by functional/behavioral and biological/biochemical redundancy.
Assuntos
Proteína 4 Homóloga a Disks-Large/deficiência , Guanilato Quinases/deficiência , Proteínas de Membrana/deficiência , Comportamento Social , Animais , Comportamento Animal/fisiologia , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Guanilato Quinases/genética , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologiaRESUMO
While the postsynaptic density of excitatory synapses is known to encompass a highly complex molecular machinery, the equivalent organizational structure of inhibitory synapses has long remained largely undefined. In recent years, however, substantial progress has been made towards identifying the full complement of organizational proteins present at inhibitory synapses, including submembranous scaffolds, intracellular signaling proteins, transsynaptic adhesion proteins, and secreted factors. Here, we summarize these findings and discuss future challenges in assigning synapse-specific functions to the newly discovered catalog of proteins, an endeavor that will depend heavily on newly developed technologies such as proximity biotinylation. Further advances are made all the more essential by growing evidence that links inhibitory synapses to psychiatric and neurological disorders.
Assuntos
Sinapses/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismoRESUMO
Impairments in social skills are central to mental disease, and developing tools for their assessment in mouse models is essential. Here we present the SocioBox, a new behavioral paradigm to measure social recognition. Using this paradigm, we show that male wildtype mice of different strains can readily identify an unfamiliar mouse among 5 newly acquainted animals. In contrast, female mice exhibit lower locomotor activity during social exploration in the SocioBox compared to males and do not seem to discriminate between acquainted and unfamiliar mice, likely reflecting inherent differences in gender-specific territorial tasks. In addition to a simple quantification of social interaction time of mice grounded on predefined spatial zones (zone-based method), we developed a set of unbiased, data-driven analysis tools based on heat map representations and characterized by greater sensitivity. First proof-of-principle that the SocioBox allows diagnosis of social recognition deficits is provided using male PSD-95 heterozygous knockout mice, a mouse model related to psychiatric pathophysiology.
RESUMO
Neuroligin 2 (Nlgn2) is a synaptic adhesion protein that plays a central role in the maturation and function of inhibitory synapses. Nlgn2 mutations have been associated with psychiatric disorders such as schizophrenia, and in mice, deletion of Nlgn2 results in a pronounced anxiety phenotype. To date, however, the molecular and cellular mechanisms linking Nlgn2 deletion to psychiatric phenotypes remain completely unknown. The aim of this study was therefore to define the role of Nlgn2 in anxiety-related neural circuits. To this end, we used a combination of behavioral, immunohistochemical, and electrophysiological approaches in Nlgn2 knockout (KO) mice to expand the behavioral characterization of these mice and to assess the functional consequences of Nlgn2 deletion in the amygdala. Moreover, we investigated the differential activation of anxiety-related circuits in Nlgn2 KO mice using a cFOS activation assay following exposure to an anxiogenic stimulus. We found that Nlgn2 is present at the majority of inhibitory synapses in the basal amygdala, where its deletion affects postsynaptic structures specifically at perisomatic sites and leads to impaired inhibitory synaptic transmission. Following exposure to an anxiogenic environment, Nlgn2 KO mice show a robust anxiety phenotype as well as exacerbated induction of cFOS expression specifically in CaMKII-positive projection neurons, but not in parvalbumin- or somatostatin-positive interneurons. Our data indicate that Nlgn2 deletion predominantly affects inhibitory synapses onto projection neurons in basal amygdala, resulting in decreased inhibitory drive onto these neurons and leading to their excessive activation under anxiogenic conditions. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Assuntos
Tonsila do Cerebelo/metabolismo , Ansiedade/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Potenciais Pós-Sinápticos Inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/genética , Tonsila do Cerebelo/fisiopatologia , Animais , Ansiedade/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/genética , Atividade Motora/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismoRESUMO
Fragile X syndrome (FXS) is mostly caused by a CGG triplet expansion in the fragile X mental retardation 1 gene (FMR1). Up to 60% of affected males fulfill criteria for autism spectrum disorder (ASD), making FXS the most frequent monogenetic cause of syndromic ASD. It is unknown, however, whether normal variants (independent of mutations) in the fragile X gene family (FMR1, FXR1, FXR2) and in FMR2 modulate autistic features. Here, we report an accumulation model of 8 SNPs in these genes, associated with autistic traits in a discovery sample of male patients with schizophrenia (N = 692) and three independent replicate samples: patients with schizophrenia (N = 626), patients with other psychiatric diagnoses (N = 111) and a general population sample (N = 2005). For first mechanistic insight, we contrasted microRNA expression in peripheral blood mononuclear cells of selected extreme group subjects with high- versus low-risk constellation regarding the accumulation model. Thereby, the brain-expressed miR-181 species emerged as potential "umbrella regulator", with several seed matches across the fragile X gene family and FMR2. To conclude, normal variation in these genes contributes to the continuum of autistic phenotypes.