Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 67(7): 858-875, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37421396

RESUMO

OBJECTIVES: Foaming and spraying are common application techniques for biocidal products. In the past, inhalation and dermal exposure during spraying have been investigated extensively. Currently, however, no exposure data are available for foaming, hindering a reliable risk assessment for foam applications of biocidal products. The focus of this project was the quantification of inhalation and potential dermal exposure to non-volatile active substances during the foam application of biocidal products in occupational settings. In some settings, exposure during spray application was measured for comparative purposes. METHODS: The inhalation and dermal exposure of operators were investigated during the application of benzalkonium chlorides and pyrethroids by foaming and spraying, considering both small- and large-scale application devices. Inhalation exposure was measured by personal air sampling; potential dermal exposure was measured using coveralls and gloves. RESULTS: Potential dermal exposure was substantially higher than inhalation exposure. Changing from spraying to foaming reduced inhalation exposure to airborne non-volatile active substances, but had no relevant effect on potential dermal exposure. However, for potential dermal exposure, considerable differences were observed between the application device categories. CONCLUSIONS: To our knowledge, this study presents the first comparative exposure data for the foam and spray application of biocidal products in occupational settings with detailed contextual information. The results indicate a reduction of inhalation exposure with foam application compared to spray application. However, special attention is necessary for dermal exposure, which is not reduced by this intervention.


Assuntos
Exposição Ocupacional , Humanos , Exposição por Inalação , Medição de Risco
2.
Ann Work Expo Health ; 67(6): 731-743, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37358889

RESUMO

The application of biocidal products by foam is considered an alternative to droplet spraying when disinfecting surfaces or fighting infestations. Inhalation exposure to aerosols containing the biocidal substances cannot be ruled out during foaming. In contrast to droplet spraying, very little is known about aerosol source strength during foaming. In this study, the formation of inhalable aerosols was quantified according to the aerosol release fractions of the active substance. The aerosol release fraction is defined as the mass of active substance transferred into inhalable airborne particles during foaming, normalised to the total amount of active substance released through the foam nozzle. Aerosol release fractions were measured in control chamber experiments where common foaming technologies were operated according to their typical conditions of use. These investigations include foams generated mechanically by actively mixing air with a foaming liquid as well as systems that use a blowing agent for foam formation. The values of the aerosol release fraction ranged from 3.4 × 10-6 to 5.7 × 10-3 (average values). For foaming processes based on mixing air and the foaming liquid, the release fractions could be correlated to the process and foam parameters such as foam exit velocity, nozzle dimensions, and foam expansion ratio.


Assuntos
Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Aerossóis , Exposição por Inalação/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA