Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(7): e9030, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813932

RESUMO

The invasion of a novel host species can create a mismatch in host choice and offspring survival (performance) when native parasitoids attempt to exploit the invasive host without being able to circumvent its resistance mechanisms. Invasive hosts can therefore act as evolutionary trap reducing parasitoids' fitness and this may eventually lead to their extinction. Yet, escape from the trap can occur when parasitoids evolve behavioral avoidance or a physiological strategy compatible with the trap host, resulting in either host-range expansion or a complete host-shift. We developed an individual based model to investigate which conditions promote parasitoids to evolve behavioral preference that matches their performance, including host-trap avoidance, and which conditions lead to adaptations to the unsuitable hosts. The model was inspired by solitary endo-parasitoids attacking larval host stages. One important aspect of these conditions was reduced host survival during incompatible interaction, where a failed parasitization attempt by a parasitoid resulted not only in death of her offspring but also in host killing. This non-reproductive host mortality had a strong influence on the likelihood of establishment of novel host-parasitoid relationship, in some cases constraining adaptation to the trap host species. Moreover, our model revealed that host-search efficiency and genetic variation in host-preference play a key role in the likelihood that parasitoids will include the suboptimal host in their host range, or will evolve behavioral avoidance resulting in specialization and host-range conservation, respectively. Hence, invasive species might change the evolutionary trajectory of native parasitoid species, which is important for predicting biocontrol ability of native parasitoids towards novel hosts.

2.
Evol Appl ; 14(8): 1993-2011, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429744

RESUMO

Establishment and spread of invasive species can be facilitated by lack of natural enemies in the invaded area. Host-range evolution of natural enemies augments their ability to reduce the impact of the invader and could enhance their value for biological control. We assessed the potential of the Drosophila parasitoid, Leptopilina heterotoma (Hymenoptera: Figitidae), to exploit the invasive pest Drosophila suzukii by focusing on three performance indices: (i) attack rate; (ii) host killing, consisting of killing rate and lethal attack rate (killing efficiency); and (iii) successful offspring development (reproductive success). We found significant intraspecific variation in attack rate and killing rate and lethal attack rate among seven European populations, but offspring generally failed to successfully develop from the D. suzukii host. We crossed these European lines to create a genetically variable source population and performed a half-sib analysis to quantify genetic variation. Using a Bayesian animal model, we found that attack rate and killing rate had a heritability of h 2 = 0.2 , lethal attack rate h 2 = 0.4 , and offspring development h 2 = 0 . We then artificially selected wasps with the highest killing rate of D. suzukii for seven generations to test whether host-killing could be improved. There was a small and inconsistent response to selection in the three selection lines. Realized heritability ( h r 2 ) after four generations of selection was 0.17 but near zero after seven generations of selection. The genetic response might have been masked by an increased D. suzukii fitness resulting from adaptation to laboratory conditions. Our study reveals that native, European, L. heterotoma can attack the invasive pest, D. suzukii and significantly reduce fly survival and that different steps of the parasitization process need to be considered in the evolution of host-range. It highlights how evolutionary principles can be applied to optimize performance of native species for biological control.

3.
Evol Appl ; 11(9): 1473-1497, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344621

RESUMO

The development of biological control methods for exotic invasive pest species has become more challenging during the last decade. Compared to indigenous natural enemies, species from the pest area of origin are often more efficient due to their long coevolutionary history with the pest. The import of these well-adapted exotic species, however, has become restricted under the Nagoya Protocol on Access and Benefit Sharing, reducing the number of available biocontrol candidates. Finding new agents and ways to improve important traits for control agents ("biocontrol traits") is therefore of crucial importance. Here, we demonstrate the potential of a surprisingly under-rated method for improvement of biocontrol: the exploitation of intraspecific variation in biocontrol traits, for example, by selective breeding. We propose a four-step approach to investigate the potential of this method: investigation of the amount of (a) inter- and (b) intraspecific variation for biocontrol traits, (c) determination of the environmental and genetic factors shaping this variation, and (d) exploitation of this variation in breeding programs. We illustrate this approach with a case study on parasitoids of Drosophila suzukii, a highly invasive pest species in Europe and North America. We review all known parasitoids of D. suzukii and find large variation among and within species in their ability to kill this fly. We then consider which genetic and environmental factors shape the interaction between D. suzukii and its parasitoids to explain this variation. Insight into the causes of variation informs us on how and to what extent candidate agents can be improved. Moreover, it aids in predicting the effectiveness of the agent upon release and provides insight into the selective forces that are limiting the adaptation of indigenous species to the new pest. We use this knowledge to give future research directions for the development of selective breeding methods for biocontrol agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA