Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 13(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800703

RESUMO

Noncoding RNAs (ncRNAs) have emerged as a novel class of genomic regulators, ushering in a new era in molecular biology. With the advent of advanced genetic sequencing technology, several different classes of ncRNAs have been uncovered, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs), which have been linked to many important developmental and disease processes and are being pursued as clinical and therapeutic targets. Molecular phenotyping studies of glioblastoma (GBM), the most common and lethal cancer of the adult brain, revealed that several ncRNAs are frequently dysregulated in its pathogenesis. Additionally, ncRNAs regulate many important aspects of glioma biology including tumour cell proliferation, migration, invasion, apoptosis, angiogenesis, and self-renewal. Here, we present an overview of the biogenesis of the different classes of ncRNAs, discuss their biological roles, as well as their relevance to gliomagenesis. We conclude by discussing potential approaches to therapeutically target the ncRNAs in clinic.

3.
Chin Neurosurg J ; 7(1): 6, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33423692

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a lethal pediatric brain tumor and the leading cause of brain tumor-related death in children. As several clinical trials over the past few decades have led to no significant improvements in outcome, the current standard of care remains fractionated focal radiation. Due to the recent increase in stereotactic biopsies, tumor tissue availabilities have enabled our advancement of the genomic and molecular characterization of this lethal cancer. Several groups have identified key histone gene mutations, genetic drivers, and methylation changes in DIPG, providing us with new insights into DIPG tumorigenesis. Subsequently, there has been increased development of in vitro and in vivo models of DIPG which have the capacity to unveil novel therapies and strategies for drug delivery. This review outlines the clinical characteristics, genetic landscape, models, and current treatments and hopes to shed light on novel therapeutic avenues and challenges that remain.

4.
Neuro Oncol ; 23(5): 718-731, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33378446

RESUMO

For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole-genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as Drosophila melanogaster, Caenorhabditis elegans, and Danio rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species-specific breeding strategies, highlight the advantages of modeling brain tumors in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.


Assuntos
Neoplasias Encefálicas , Peixe-Zebra , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Caenorhabditis elegans , Drosophila melanogaster , Humanos , Camundongos , Transdução de Sinais
5.
J Control Release ; 330: 1034-1045, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33188825

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a surgically unresectable and devasting tumour in children. To date, there are no effective chemotherapeutics despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is likely responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive method for treating CNS tumours. Moreover, MRgFUS allows for the temporary and repeated disruption of the BBB. Our group previously reported the feasibility of temporary BBB opening within the normal murine brainstem using MRgFUS following intravenous (IV) administration of microbubbles. In the current study, we set out to test the effectiveness of targeted chemotherapy when paired with MRgFUS in murine models of DIPG. Doxorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested on patient-derived cell lines. We studied the RCAS/Tv-a model where RCAS-Cre, RCAS-PDGFB, and RCAS-H3.3K27M were used to drive tumourigenesis upon injection in the pons. We also used orthotopically injected SU-DIPG-6 and SU-DIPG-17 xenografts which demonstrated a diffusely infiltrative tumour growth pattern similar to human DIPG. In our study, SU-DIPG-17 xenografts were more representative of human DIPG with an intact BBB. Following IV administration of doxorubicin, MRgFUS-treated animals exhibited a 4-fold higher concentration of drug within the SU-DIPG-17 brainstem tumours compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals whose tumours also exhibited decreased Ki-67 expression. Herein, we provide evidence for the ability of MRgFUS to enhance drug delivery in a mouse model of DIPG. These data provide critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may ameliorate DIPG chemotherapeutic approaches in children.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Preparações Farmacêuticas , Animais , Neoplasias do Tronco Encefálico/diagnóstico por imagem , Neoplasias do Tronco Encefálico/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Imageamento por Ressonância Magnética , Camundongos
6.
Cell ; 181(6): 1329-1345.e24, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32445698

RESUMO

Posterior fossa A (PFA) ependymomas are lethal malignancies of the hindbrain in infants and toddlers. Lacking highly recurrent somatic mutations, PFA ependymomas are proposed to be epigenetically driven tumors for which model systems are lacking. Here we demonstrate that PFA ependymomas are maintained under hypoxia, associated with restricted availability of specific metabolites to diminish histone methylation, and increase histone demethylation and acetylation at histone 3 lysine 27 (H3K27). PFA ependymomas initiate from a cell lineage in the first trimester of human development that resides in restricted oxygen. Unlike other ependymomas, transient exposure of PFA cells to ambient oxygen induces irreversible cellular toxicity. PFA tumors exhibit a low basal level of H3K27me3, and, paradoxically, inhibition of H3K27 methylation specifically disrupts PFA tumor growth. Targeting metabolism and/or the epigenome presents a unique opportunity for rational therapy for infants with PFA ependymoma.


Assuntos
Ependimoma/genética , Ependimoma/metabolismo , Epigenoma/genética , Neoplasias Infratentoriais/genética , Neoplasias Infratentoriais/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Proliferação de Células/genética , Metilação de DNA/genética , Epigenômica/métodos , Histonas/genética , Histonas/metabolismo , Humanos , Lactente , Lisina/genética , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética
7.
Cancer Res ; 76(16): 4708-19, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27325644

RESUMO

Proliferating cancer cells are characterized by high rates of glycolysis, lactate production, and altered mitochondrial metabolism. This metabolic reprogramming provides important metabolites for proliferation of tumor cells, including glioblastoma. These biological processes, however, generate oxidative stress that must be balanced through detoxification of reactive oxygen species (ROS). Using an unbiased retroviral loss-of-function screen in nontransformed human astrocytes, we demonstrate that mitochondrial PTEN-induced kinase 1 (PINK1) is a regulator of the Warburg effect and negative regulator of glioblastoma growth. We report that loss of PINK1 contributes to the Warburg effect through ROS-dependent stabilization of hypoxia-inducible factor-1A and reduced pyruvate kinase muscle isozyme 2 activity, both key regulators of aerobic glycolysis. Mechanistically, PINK1 suppresses ROS and tumor growth through FOXO3a, a master regulator of oxidative stress and superoxide dismutase 2. These findings highlight the importance of PINK1 and ROS balance in normal and tumor cells. PINK1 loss was observed in a significant number of human brain tumors including glioblastoma (n > 900) and correlated with poor patient survival. PINK1 overexpression attenuates in vivo glioblastoma growth in orthotopic mouse xenograft models and a transgenic glioblastoma model in Drosophila Cancer Res; 76(16); 4708-19. ©2016 AACR.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Astrócitos/metabolismo , Western Blotting , Proliferação de Células , Drosophila , Glicólise/fisiologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Estresse Oxidativo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA