Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 35(19): 3258-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26169833

RESUMO

The phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) catalytic subunit p110α is the most frequently mutated kinase in human cancer, and the hot spot mutations E542K, E545K, and H1047R are the most common mutations in p110α. Very little is known about the metabolic consequences of the hot spot mutations of p110α in vivo. In this study, we used adenoviral gene transfer in mice to investigate the effects of the E545K and H1047R mutations on hepatic and whole-body glucose metabolism. We show that hepatic expression of these hot spot mutations results in rapid hepatic steatosis, paradoxically accompanied by increased glucose tolerance, and marked glycogen accumulation. In contrast, wild-type p110α expression does not lead to hepatic accumulation of lipids or glycogen despite similar degrees of upregulated glycolysis and expression of lipogenic genes. The reprogrammed metabolism of the E545K and H1047R p110α mutants was surprisingly not dependent on altered p110α lipid kinase activity.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Metabolismo Energético , Mutação de Sentido Incorreto , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Ativação Enzimática , Ácidos Graxos/metabolismo , Fígado Gorduroso/enzimologia , Intolerância à Glucose , Glicogênio/metabolismo , Glicólise , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos Knockout , Oxirredução , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
PLoS Genet ; 10(11): e1004763, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25375155

RESUMO

To reduce expression of gene products not required under stress conditions, eukaryotic cells form large and complex cytoplasmic aggregates of RNA and proteins (stress granules; SGs), where transcripts are kept translationally inert. The overall composition of SGs, as well as their assembly requirements and regulation through stress-activated signaling pathways remain largely unknown. We have performed a genome-wide screen of S. cerevisiae gene deletion mutants for defects in SG formation upon glucose starvation stress. The screen revealed numerous genes not previously implicated in SG formation. Most mutants with strong phenotypes are equally SG defective when challenged with other stresses, but a considerable fraction is stress-specific. Proteins associated with SG defects are enriched in low-complexity regions, indicating that multiple weak macromolecule interactions are responsible for the structural integrity of SGs. Certain SG-defective mutants, but not all, display an enhanced heat-induced mutation rate. We found several mutations affecting the Ran GTPase, regulating nucleocytoplasmic transport of RNA and proteins, to confer SG defects. Unexpectedly, we found stress-regulated transcripts to reach more extreme levels in mutants unable to form SGs: stress-induced mRNAs accumulate to higher levels than in the wild-type, whereas stress-repressed mRNAs are reduced further in such mutants. Our findings are consistent with the view that, not only are SGs being regulated by stress signaling pathways, but SGs also modulate the extent of stress responses. We speculate that nucleocytoplasmic shuttling of RNA-binding proteins is required for gene expression regulation during stress, and that SGs modulate this traffic. The absence of SGs thus leads the cell to excessive, and potentially deleterious, reactions to stress.


Assuntos
Grânulos Citoplasmáticos/genética , Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Estresse Fisiológico/genética , Grânulos Citoplasmáticos/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Glucose/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Saccharomyces cerevisiae/fisiologia , Inanição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA