Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 24(6): 102644, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34151235

RESUMO

Magnetohydrodynamic (MHD) generators directly convert mechanical energy to electrical energy. However, due to production of low amplitude voltages at low fluid velocities, they are not useful for electronic devices requiring power at watt scale. This work introduces vortex MHD, capable of producing voltages on scale of volts and generating power on a scale of watts. This is achieved by using Galinstan, a highly conductive metallic fluid, which remains liquid at room temperature. The proposed device comprises an impeller and set of copper coils positioned in a ferromagnetic housing. Three-phase AC current is passed in the coils producing a rotating magnetic field. The interaction of a moving conductive fluid and rotating magnetic field governed by Faraday's law of induction serves as a mechanism of electrical current generation. The study investigates the system performance and, in particular, variation of power with respect to system parameters like fluid inlet velocity and stator current.

3.
Sci Rep ; 5: 16537, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567850

RESUMO

We have proposed and successfully demonstrated a novel approach to direct conversion of mechanical energy into electrical energy using microfluidics. The method combines previously demonstrated reverse electrowetting on dielectric (REWOD) phenomenon with the fast self-oscillating process of bubble growth and collapse. Fast bubble dynamics, used in conjunction with REWOD, provides a possibility to increase the generated power density by over an order of magnitude, as compared to the REWOD alone. This energy conversion approach is particularly well suited for energy harvesting applications and can enable effective coupling to a broad array of mechanical systems including such ubiquitous but difficult to utilize low-frequency energy sources as human and machine motion. The method can be scaled from a single micro cell with 10(-6) W output to power cell arrays with a total power output in excess of 10 W. This makes the fabrication of small light-weight energy harvesting devices capable of producing a wide range of power outputs feasible.

4.
Langmuir ; 27(23): 14143-50, 2011 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-21899285

RESUMO

The prevention and control of ice accumulation has important applications in aviation, building construction, and energy conversion devices. One area of active research concerns the use of superhydrophobic surfaces for preventing ice formation. The present work develops a physics-based modeling framework to predict ice formation on cooled superhydrophobic surfaces resulting from the impact of supercooled water droplets. This modeling approach analyzes the multiple phenomena influencing ice formation on superhydrophobic surfaces through the development of submodels describing droplet impact dynamics, heat transfer, and heterogeneous ice nucleation. These models are then integrated together to achieve a comprehensive understanding of ice formation upon impact of liquid droplets at freezing conditions. The accuracy of this model is validated by its successful prediction of the experimental findings that demonstrate that superhydrophobic surfaces can fully prevent the freezing of impacting water droplets down to surface temperatures of as low as -20 to -25 °C. The model can be used to study the influence of surface morphology, surface chemistry, and fluid and thermal properties on dynamic ice formation and identify parameters critical to achieving icephobic surfaces. The framework of the present work is the first detailed modeling tool developed for the design and analysis of surfaces for various ice prevention/reduction strategies.


Assuntos
Gelo , Modelos Químicos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Termodinâmica
5.
Nat Commun ; 2: 448, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21863015

RESUMO

Over the last decade electrical batteries have emerged as a critical bottleneck for portable electronics development. High-power mechanical energy harvesting can potentially provide a valuable alternative to the use of batteries, but, until now, a suitable mechanical-to-electrical energy conversion technology did not exist. Here we describe a novel mechanical-to-electrical energy conversion method based on the reverse electrowetting phenomenon. Electrical energy generation is achieved through the interaction of arrays of moving microscopic liquid droplets with novel nanometer-thick multilayer dielectric films. Advantages of this process include the production of high power densities, up to 10(3) W m(-2); the ability to directly utilize a very broad range of mechanical forces and displacements; and the ability to directly output a broad range of currents and voltages, from several volts to tens of volts. These advantages make this method uniquely suited for high-power energy harvesting from a wide variety of environmental mechanical energy sources.

6.
ACS Nano ; 4(12): 7699-707, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21062048

RESUMO

Materials that control ice accumulation are important to aircraft efficiency, highway and powerline maintenance, and building construction. Most current deicing systems include either physical or chemical removal of ice, both energy and resource-intensive. A more desirable approach would be to prevent ice formation rather than to fight its build-up. Much attention has been given recently to freezing of static water droplets resting on supercooled surfaces. Ice accretion, however, begins with the droplet/substrate collision followed by freezing. Here we focus on the behavior of dynamic droplets impacting supercooled nano- and microstructured surfaces. Detailed experimental analysis of the temperature-dependent droplet/surface interaction shows that highly ordered superhydrophobic materials can be designed to remain entirely ice-free down to ca. -25 to -30 °C, due to their ability to repel impacting water before ice nucleation occurs. Ice accumulated below these temperatures can be easily removed. Factors contributing to droplet retraction, pinning and freezing are addressed by combining classical nucleation theory with heat transfer and wetting dynamics, forming the foundation for the development of rationally designed ice-preventive materials. In particular, we emphasize the potential of hydrophobic polymeric coatings bearing closed-cell surface microstructures for their improved mechanical and pressure stability, amenability to facile replication and large-scale fabrication, and opportunities for greater tuning of their material and chemical properties.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Água/química , Congelamento , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Langmuir ; 25(6): 3876-9, 2009 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-19708158

RESUMO

In this paper, we describe a tunable, high-reflectivity optofluidic device based on self-assembly of anisotropically functionalized hexagonal micromirrors (Janus tiles) on the surface of an oil droplet to create a concave liquid mirror. The liquid mirror is deposited on a patterned transparent electrode that allows the focal length and axial position to be electrically controlled. The mirror is mechanically robust and retains its integrity even at high levels of vibrational excitation of the interface. The use of reflection instead of refraction overcomes the limited available refractive-index contrast between pairs of density-matched liquids, allowing stronger focusing than is possible for a liquid lens of the same geometry. This approach is compatible with optical instruments that could provide novel functionality-for example, a dynamic 3D projector, i.e., a light source which can scan an image onto a moving, nonplanar focal surface. Janus tiles with complex optical properties can be manufactured using our approach, thus potentially enabling a wide range of novel optical elements.

8.
Langmuir ; 23(18): 9128-33, 2007 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17663572

RESUMO

In this work, electrically controlled fully reversible wetting-dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated. Droplet behavior can be reversibly switched between the superhydrophobic Cassie-Baxter state and the hydrophilic Wenzel state by the application of electrical voltage and current. The nature of the reversibility mechanism was studied both experimentally and theoretically. The reported results can provide a new method of dynamically controlling liquid-solid interactions.

9.
Science ; 315(5811): 487-90, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17255505

RESUMO

Responsive behavior, which is intrinsic to natural systems, is becoming a key requirement for advanced artificial materials and devices, presenting a substantial scientific and engineering challenge. We designed dynamic actuation systems by integrating high-aspect-ratio silicon nanocolumns, either free-standing or substrate-attached, with a hydrogel layer. The nanocolumns were put in motion by the "muscle" of the hydrogel, which swells or contracts depending on the humidity level. This actuation resulted in a fast reversible reorientation of the nanocolumns from tilted to perpendicular to the surface. By further controlling the stress field in the hydrogel, the formation of a variety of elaborate reversibly actuated micropatterns was demonstrated. The mechanics of the actuation process have been assessed. Dynamic control over the movement and orientation of surface nanofeatures at the micron and submicron scales may have exciting applications in actuators, microfluidics, or responsive materials.


Assuntos
Hidrogéis , Nanoestruturas , Umidade , Hidrogéis/química , Matemática , Nanotecnologia , Silício , Água
10.
Langmuir ; 20(10): 3824-7, 2004 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-15969363

RESUMO

In this work, for the first time, a dynamic electrical control of the wetting behavior of liquids on nanostructured surfaces, which spans the entire possible range from the superhydrophobic behavior to nearly complete wetting, has been demonstrated. Moreover, this kind of dynamic control was obtained at voltages as low as 22 V. We have demonstrated that the liquid droplet on a nanostructured surface exhibits sharp transitions between three possible wetting states as a function of applied voltage and liquid surface tension. We have examined experimentally and theoretically the nature of these transitions. The reported results provide novel methods of manipulating liquids at the microscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA