Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 50(7): 898-908, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35545256

RESUMO

Fragment crystallizable (Fc) fusion is commonly used for extending the half-life of biotherapeutics such as cytokines. In this work, we studied the pharmacokinetics of Fc-fused interleukin-10 (IL-10) proteins that exhibited potent antitumor activity in mouse syngeneic tumor models. At pharmacologically active doses of ≥0.1 mg/kg, both mouse Fc-mouse IL-10 and human Fc-human IL-10, constructed as the C terminus of the Fc domain fused with IL-10 via a glycine-serine polypeptide linker, exhibited nonlinear pharmacokinetics after intravenous administration to mice at the doses of 0.05, 0.5, and 5 mg/kg. With a nominal dose ratio of 1:10:100; the ratio of the area under the curve for mouse Fc-mouse IL-10 and human Fc-human IL-10 was 1:181:1830 and 1:75:633, respectively. In contrast, recombinant mouse or human IL-10 proteins exhibited linear pharmacokinetics in mice. Compartmental analysis, using the Michaelis-Menten equation with the in vitro IL-10 receptor alpha binding affinity inputted as the Km, unified the pharmacokinetic data across the dose range. Additionally, nontarget-mediated clearance estimated for fusion proteins was ∼200-fold slower than that for cytokines, causing the manifestation of target-mediated drug disposition (TMDD) in the fusion protein pharmacokinetics. The experimental data generated with a mouse IL-10 receptor alpha-blocking antibody and a human Fc-human IL-10 mutant with a reduced receptor binding affinity showed significant improvements in pharmacokinetics, supporting TMDD as the cause of nonlinearity. Target expression and its effect on pharmacokinetics must be determined when considering using Fc as a half-life extension strategy, and pharmacokinetic evaluations need to be performed at a range of doses covering pharmacological activity. SIGNIFICANCE STATEMENT: Target-mediated drug disposition can manifest to affect the pharmacokinetics of a fragment crystallizable (Fc)-fused cytokine when the nontarget-mediated clearance of the cytokine is decreased due to neonatal Fc receptor-mediated recycling and molecular weight increases that reduce the renal clearance. The phenomenon was demonstrated with interleukin-10 Fc-fusion proteins in mice at pharmacologically active doses. Future drug designs using Fc as a half-life extension approach for cytokines need to consider target expression and its effect on pharmacokinetics at relevant doses.


Assuntos
Interleucina-10 , Animais , Meia-Vida , Humanos , Interleucina-10/farmacocinética , Camundongos , Receptores de Interleucina-10 , Proteínas Recombinantes de Fusão/farmacocinética
2.
J Med Chem ; 65(5): 4291-4317, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35179904

RESUMO

Glucokinase (GK) is a key regulator of glucose homeostasis, and its small-molecule activators represent a promising opportunity for the treatment of type 2 diabetes. Several GK activators have been advanced into clinical trials and have demonstrated promising efficacy; however, hypoglycemia represents a key risk for this mechanism. In an effort to mitigate this hypoglycemia risk while maintaining the efficacy of the GK mechanism, we have investigated a series of amino heteroaryl phosphonate benzamides as ''partial" GK activators. The structure-activity relationship studies starting from a "full GK activator" 11, which culminated in the discovery of the "partial GK activator" 31 (BMS-820132), are discussed. The synthesis and in vitro and in vivo preclinical pharmacology profiles of 31 and its pharmacokinetics (PK) are described. Based on its promising in vivo efficacy and preclinical ADME and safety profiles, 31 was advanced into human clinical trials.


Assuntos
Azetidinas , Diabetes Mellitus Tipo 2 , Hipoglicemia , Organofosfonatos , Azetidinas/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucoquinase , Humanos , Hipoglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico
3.
J Mol Biol ; 434(2): 167398, 2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-34902431

RESUMO

Structural heterogeneity often constrains the characterization of aggregating proteins to indirect or low-resolution methods, obscuring mechanistic details of association. Here, we report progress in understanding the aggregation of Adnectins, engineered binding proteins with an immunoglobulin-like fold. We rationally design Adnectin solubility and measure amide hydrogen/deuterium exchange (HDX) under conditions that permit transient protein self-association. Protein-protein binding commonly slows rates of HDX; in contrast, we find that Adnectin association may induce faster HDX for certain amides, particularly in the C-terminal ß-strand. In aggregation-prone proteins, we identify a pattern of very different rates of amide HDX for residues linked by reciprocal hydrogen bonds in the native structure. These results may be explained by local loss of native structure and formation of an inter-protein interface. Amide HDX induced by self-association, detected here by deliberate modulation of propensity for such interactions, may be a general phenomenon with the potential to expose mechanisms of aggregation by diverse proteins.


Assuntos
Amidas/química , Deutério/química , Hidrogênio/química , Ligação Proteica , Sequência de Aminoácidos , Ligação de Hidrogênio , Modelos Moleculares , Proteínas/química , Solubilidade
4.
Proteins ; 86(11): 1147-1156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30168197

RESUMO

Protein aggregation is a phenomenon that has attracted considerable attention within the pharmaceutical industry from both a developability standpoint (to ensure stability of protein formulations) and from a research perspective for neurodegenerative diseases. Experimental identification of aggregation behavior in proteins can be expensive; and hence, the development of accurate computational approaches is crucial. The existing methods for predicting protein aggregation rely mostly on the primary sequence and are typically trained on amyloid-like proteins. However, the training bias toward beta amyloid peptides may worsen prediction accuracy of such models when applied to larger protein systems. Here, we present a novel algorithm to identify aggregation-prone regions in proteins termed "AggScore" that is based entirely on three-dimensional structure input. The method uses the distribution of hydrophobic and electrostatic patches on the surface of the protein, factoring in the intensity and relative orientation of the respective surface patches into an aggregation propensity function that has been trained on a benchmark set of 31 adnectin proteins. AggScore can accurately identify aggregation-prone regions in several well-studied proteins and also reliably predict changes in aggregation behavior upon residue mutation. The method is agnostic to an amyloid-specific aggregation context and thus may be applied to globular proteins, small peptides and antibodies.


Assuntos
Modelos Biológicos , Agregados Proteicos , Proteínas/química , Algoritmos , Peptídeos beta-Amiloides/química , Anticorpos/química , Hormônio do Crescimento/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Solubilidade , Eletricidade Estática
5.
Anal Chem ; 90(4): 2542-2547, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29357216

RESUMO

Capillary gel electrophoresis using sodium dodecyl sulfate (CE-SDS) is used commercially to provide quantitative purity data for therapeutic protein characterization and release. In CE-SDS, proteins are denatured under reducing or nonreducing conditions in the presence of SDS and electrophoretically separated by molecular weight and hydrodynamic radius through a sieving polymer matrix. Acceptable performance of this method would yield protein peaks that are baseline resolved and symmetrical. Nominal CE-SDS conditions and parameters are not optimal for all therapeutic proteins, specifically for Recombinant Therapeutic Protein-1 (RTP-1), where acceptable resolution and peak symmetry were not achieved. The application of longer alkyl chain detergents in the running buffer matrix substantially improved assay performance. Matrix running buffer containing sodium hexadecyl sulfate (SHS) increased peak resolution and plate count 3- and 8-fold, respectively, compared to a traditional SDS-based running gel matrix. At Bristol-Myers Squibb (BMS), we developed and qualified a viable method for the characterization and release of RTP-1 using an SHS-containing running buffer matrix. This work underscores the potential of detergents other than SDS to enhance the resolution and separation power of CE-based separation methods.


Assuntos
Proteínas de Membrana Transportadoras/isolamento & purificação , Sulfatos/química , Eletroforese Capilar , Humanos , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
6.
MAbs ; 10(1): 95-103, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135326

RESUMO

TL1A, a tumor necrosis factor-like cytokine, is a ligand for the death domain receptor DR3. TL1A, upon binding to DR3, can stimulate lymphocytes and trigger secretion of proinflammatory cytokines. Therefore, blockade of TL1A/DR3 interaction may be a potential therapeutic strategy for autoimmune and inflammatory diseases. Recently, the anti-TL1A monoclonal antibody 1 (mAb1) with a strong potency in blocking the TL1A/DR3 interaction was identified. Here, we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to obtain molecular-level details of mAb1's binding epitope on TL1A. HDX coupled with electron-transfer dissociation MS provided residue-level epitope information. The HDX dataset, in combination with solvent accessible surface area (SASA) analysis and computational modeling, revealed a discontinuous epitope within the predicted interaction interface of TL1A and DR3. The epitope regions span a distance within the approximate size of the variable domains of mAb1's heavy and light chains, indicating it uses a unique mechanism of action to block the TL1A/DR3 interaction.


Assuntos
Anticorpos Monoclonais/metabolismo , Medição da Troca de Deutério/métodos , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Células CHO , Cricetulus , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/química , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia
7.
J Pharm Sci ; 106(11): 3222-3229, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28634122

RESUMO

Variants of monoclonal antibody containing an extra light chain have been reported in protein products. Due to potential impact on potency and immunogenicity, it is important to understand the formation mechanism of such variants so that appropriate control strategies can be implemented to assure product quality. In a model monoclonal antibody, we observed a size variant with an extra light chain noncovalently associated with the monomer (later named as "1.2mer"). The interaction between monomer and the extra light chain was characterized by native spray and hydrogen-deuterium exchange mass spectrometry techniques. The goal is to understand the nature of the noncovalent interaction, to map out the interaction interface and regions of potential conformational distortions. In addition, computational modeling was used to aid in binding site identification. The combined results identify the interaction interface to be located in the heavy chain region 38-57 and in the extra light chain region 30-50. To the best of our knowledge, this study is the first to characterize noncovalent interaction of a size variant comprising an antibody monomer and an extra light chain. Structural knowledge generated in this research work is invaluable for process development and construct design of antibody-based biopharmaceuticals.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Animais , Sítios de Ligação de Anticorpos , Células CHO , Cromatografia em Gel , Cricetulus , Deutério/análise , Medição da Troca de Deutério/métodos , Humanos , Hidrogênio/análise , Modelos Moleculares , Proteínas Recombinantes/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Homologia Estrutural de Proteína
8.
Anal Chem ; 89(4): 2250-2258, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193005

RESUMO

Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).


Assuntos
Alanina/metabolismo , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Interleucina-23/metabolismo , Reações Antígeno-Anticorpo , Clonagem Molecular , Medição da Troca de Deutério , Fragmentos Fab das Imunoglobulinas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mutagênese , Oxirredução , Ligação Proteica
9.
J Am Soc Mass Spectrom ; 28(5): 795-802, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527097

RESUMO

Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Agregados Proteicos , Medição da Troca de Deutério/métodos , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química
10.
ACS Med Chem Lett ; 7(6): 590-4, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326332

RESUMO

BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 µM) and PPARδ (EC50 > 100 µM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.

11.
J Mol Biol ; 428(14): 2860-79, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27216500

RESUMO

Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications.


Assuntos
Antígenos CD40/imunologia , Epitopos/imunologia , Animais , Doenças Autoimunes/imunologia , Cristalografia por Raios X/métodos , Humanos , Macaca fascicularis
12.
Bioconjug Chem ; 27(5): 1276-84, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27098672

RESUMO

A disulfide-bridged peptide drug development candidate contained two oligopeptide chains with 11 and 12 natural amino acids joined by a disulfide bond at the N-terminal end. An efficient biotechnology based process for the production of the disulfide-bridged peptide was developed. Initially, the two individual oligopeptide chains were prepared separately by designing different fusion proteins and expressing them in recombinant E. coli. Enzymatic or chemical cleavage of the two fusion proteins provided the two individual oligopeptide chains which could be conjugated via disulfide bond by conventional chemical reaction to the disulfide-bridged peptide. A novel heterodimeric system to bring the two oligopeptide chains closer and induce disulfide bond formation was designed by taking advantage of the self-assembly of a leucine zipper system. The heterodimeric approach involved designing fusion proteins with the acidic and basic components of the leucine zipper, additional amino acids to optimize interaction between the individual chains, specific cleavage sites, specific tag to ensure separation, and two individual oligopeptide chains. Computer modeling was used to identify the nature and number of amino acid residue to be inserted between the leucine zipper and oligopeptides for optimum interaction. Cloning and expression in rec E. coli, fermentation, followed by cell disruption resulted in the formation of heterodimeric protein with the interchain disulfide bond. Separation of the desired heterodimeric protein, followed by specific cleavage at methionine by cyanogen bromide provided the disulfide-bridged peptide.


Assuntos
Biotecnologia , Dissulfetos/química , Peptídeos/química , Peptídeos/metabolismo , Sequência de Aminoácidos , Escherichia coli/genética , Modelos Moleculares , Peptídeos/genética , Multimerização Proteica , Estrutura Quaternária de Proteína
13.
Anal Chem ; 88(4): 2041-50, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26824491

RESUMO

Chemical modifications can potentially change monoclonal antibody's (mAb) local or global conformation and therefore impact their efficacy as therapeutic drugs. Modifications in the complementarity-determining regions (CDRs) are especially important because they can impair the binding affinity of an antibody for its target and therefore drug potency as a result. In order to understand the impact on mAb attributes induced by specific chemical modifications within the CDR, hydrogen-deuterium exchange mass spectrometry (HDX MS) was used to interrogate the conformational impact of Asp isomerization and Met oxidation in the CDRs of a model monoclonal antibody (mAb1). Our results indicate that despite their proximity to each other, Asp54 isomerization and Met56 oxidation in CDR2 in the heavy chain of mAb1 result in opposing conformational impacts on the local and nearby regions, leading directly to different alterations on antibody-antigen binding affinity. This study revealed direct evidence of local and global conformational changes caused by two of the most common degradation pathways in the CDRs of a mAb and identified correlations between chemical modification, structure, and function of the therapeutic monoclonal antibody.


Assuntos
Anticorpos Monoclonais/química , Medição da Troca de Deutério , Espectrometria de Massas , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , Ácido Aspártico/química , Células CHO , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/metabolismo , Cricetinae , Cricetulus , Deutério/química , Ensaio de Imunoadsorção Enzimática , Hidrogênio/química , Isomerismo , Cinética , Metionina/química , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
14.
ACS Med Chem Lett ; 6(8): 908-12, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288692

RESUMO

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.

15.
J Pharm Sci ; 104(4): 1246-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25641333

RESUMO

We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues.


Assuntos
Peróxidos/química , Proteínas/química , Sulfóxidos/química , Química Farmacêutica , Desenho Assistido por Computador , Desenho de Fármacos , Metionina , Modelos Químicos , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Solventes/química , Água/química
16.
Biotechnol Bioeng ; 112(7): 1417-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25683677

RESUMO

A robust, economical process should leverage proven technology, yet be flexible enough to adopt emerging technologies which show significant benefit. Antibody and Fc-fusion processes may capitalize on the high selectivity of an affinity capture step by reducing the total number of chromatographic steps to 2. Risk associated with this approach stems from the potentially increased time frame needed for process development as well as unforeseen changes in impurity profile during first scale-up of drug substance (DS) for animal toxicology and clinical phase I trials (FIH) production, which could challenge a two-step process to the point of failure. Two different purification strategies were pursued during process development for an FIH process of a dAB-Fc fusion protein. A two-step process was compared to a three-step process. The two-step process leveraged additives to maximize impurity reduction during affinity capture. While wash additives in combination with a mixed mode chromatography met all impurity reduction requirements, HCP levels were still higher as compared to the three-step process. The three-step process was implemented for manufacture of clinical material to mitigate risk.


Assuntos
Cromatografia Líquida/métodos , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Células CHO , Cricetulus , Fragmentos Fc das Imunoglobulinas/genética , Proteínas Recombinantes de Fusão/genética
17.
Expert Rev Proteomics ; 12(2): 159-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711416

RESUMO

IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.


Assuntos
Terapia Biológica , Deutério/química , Hidrogênio/química , Interleucina-23/química , Biologia Computacional , Humanos , Interleucina-23/metabolismo , Espectrometria de Massas/métodos , Ligação Proteica , Conformação Proteica , Receptores de Interleucina/química
18.
Structure ; 20(2): 259-69, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22325775

RESUMO

Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin (¹°Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three ¹°Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibody combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the ß strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these ß strand interactions, indicating that these nonloop residues can expand the available binding footprint.


Assuntos
Receptores ErbB/química , Fibronectinas/química , Interleucina-23/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Cristalografia por Raios X , Fibronectinas/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
19.
J Med Chem ; 53(7): 2854-64, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20218621

RESUMO

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Assuntos
Descoberta de Drogas , Glicina/análogos & derivados , Oxazóis/química , Oxazóis/farmacologia , PPAR alfa/agonistas , Animais , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glicina/síntese química , Glicina/química , Glicina/farmacologia , Glicina/toxicidade , Humanos , Masculino , Camundongos , Modelos Moleculares , Oxazóis/síntese química , Oxazóis/toxicidade , PPAR alfa/química , PPAR alfa/genética , Estrutura Terciária de Proteína , Especificidade por Substrato , Ativação Transcricional/efeitos dos fármacos
20.
J Comput Aided Mol Des ; 23(7): 411-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19459054

RESUMO

The success of structure-based drug design relies on accurate protein modeling where one of the key issues is the modeling and refinement of loops. This study takes a critical look at modeled loops, determining the effect of re-sampling side-chains after the loop conformation has been generated. The results are evaluated in terms of backbone and side-chain conformations with respect to the native loop. While models can contain loops with high quality backbone conformations, the side-chain orientations could be poor, and therefore unsuitable for ligand docking and structure-based design. In this study, we report on the ability to model loop side-chains accurately using a variety of commercially available algorithms that include rotamer libraries, systematic torsion scans and knowledge-based methods.


Assuntos
Algoritmos , Proteínas/química , Homologia Estrutural de Proteína , Simulação por Computador , Desenho de Fármacos , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA