Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0304005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38935598

RESUMO

Iodine deficiency in the diet globally continues to be a cause of many diseases and disabilities. Kale is a vegetable that has health-promoting potential because of many nutrients and bioactive compounds (ascorbic acid, carotenoids, glucosinolates and phenolic compounds). Brassica vegetables, including kale, have been strongly recommended as dietary adjuvants for improving health. The nutrient and health-promoting compounds in kale are significantly affected by thermal treatments. Changes in phytochemicals upon such activities may result from two contrary phenomena: breakdown of nutrients and bioactive compounds and a matrix softening effect, which increases the extractability of phytochemicals, which may be especially significant in the case of iodine-fortified kale. This study investigated changes of basic composition, iodine, vitamin C, total carotenoids and polyphenols contents as well as antioxidant activity caused by steaming, blanching and boiling processes in the levels of two cultivars of kale (green and red) non-biofortified and biofortified via the application to nutrient solutions in hydroponic of two iodoquinolines [8-hydroxy-7-iodo-5-quinolinesulfonic acid (8-OH-7-I-5QSA) and 5-chloro-7-iodo-8-quinoline (5-Cl-7-I-8-Q)] and KIO3. Thermal processes generally significantly reduced the content of the components in question and the antioxidant activity of kale, regardless of cultivar and enrichment. It was observed that the red cultivar of kale had a greater ability to accumulate and reduce iodine losses during the culinary processes. 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a protective effect against the treatments used, compared to other enrichments, thus contributing to the preservation of high iodine content.


Assuntos
Antioxidantes , Brassica , Temperatura Alta , Iodo , Brassica/química , Brassica/metabolismo , Iodo/análise , Antioxidantes/análise , Antioxidantes/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Polifenóis/análise , Alimentos Fortificados/análise
2.
Front Plant Sci ; 14: 1288773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078108

RESUMO

Iodine deficiency in the diet creates the need to search for innovative, more sustainable and more effective strategies for enriching food with this microelement. The adopted research hypothesis assumed that the use of organic forms of iodine for supplementation of lettuce (Lactuca sativa L.), compared to mineral iodine, has a more favorable effect not only on the concentration of iodine, but also on the yield and the content of other chemical components determining its nutritional and health-promoting value. Lettuce was planted in a nutrient film technique (NFT) hydroponic study in a greenhouse. The following application of iodine compounds (all in 5 µM molar mass equivalents) were tested in the studies: control (without of iodine application); potassium iodate (positive iodine control), 8-hydroxy-7-iodo-5-quinolinesulfonic acid, 5-chloro-7-iodo-8-quinolinol, 5,7-diiodo-8-quinolinol and 4-hydroxy-8-iodo-3-quinolinecarboxylic acid. In this work, it was shown for the first time that iodoquinolines can be 1) a source of iodine for plants; 2) they have a biostimulating effect on their yielding and 3) they increase the resistance of crops to stress (due to a significant increase in the level of polyphenolic compounds). Lettuce with the addition of 8-hydroxy-7-iodo-5-quinolinesulfonic acid was characterized by the highest content of iodine, which was 221.7 times higher than in control plants. The weight gain of the whole plant was particularly visible in the case of lettuce enriched with 5-chloro-7-iodo-8-quinolinol and amounted to 26.48% compared to the control. Lettuce biofortified with iodine in the form of iodoquinolines can successfully become part of a sustainable diet based on plant products, which has a low impact on the environment and contributes to the long-term good health of an individual or community. Reducing iodine deficiency through the use of organoiodine compounds can help achieve the sustainability goal of eliminating hidden hunger, improving nutritional status and promoting sustainable agriculture.

3.
Nutrients ; 15(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38004124

RESUMO

Many disorders are a result of an inadequate supply of macronutrients and micronutrients in the diet. One such element is iodine. This study used curly kale (Brassica oleracea var. Sabellica L.) biofortified with the 5,7-diiodo-8-quinolinol iodine compound. The effect of the heat treatment on the chemical composition of the curly kale was studied. In addition, iodine bioavailability was evaluated in in vivo studies. Our investigation showed that iodine loss depends on the type of heat treatment as well as on the variety of kale. Curly kale biofortified with iodoquinoline had significantly higher iodine levels after thermal processing (steaming, blanching, boiling) than the vegetable biofortified with KIO3. Generally, steaming was the best thermal processing method, as it contributed to the lowest iodine loss in curly kale. The red variety of kale, 'Redbor F1', showed a better iodine stability during the heat treatment than the green variety, 'Oldenbor F1'. The thermal treatment also significantly affected the dry matter content and the basic chemical composition of the tested varieties of the 5,7-diI-8-Q biofortified kale. The steaming process caused a significant increase in total carbohydrates, fiber, protein and crude fat content ('Oldenbor F1', 'Redbor F1'), and antioxidant activity ('Oldenbor F1'). On the other hand, boiling caused a significant decrease, while steaming caused a significant increase, in protein and dry matter content ('Oldenbor F1', 'Redbor F1'). The blanching process caused the smallest significant decrease in ash compared to the other thermal processes used ('Oldenbor F1'). A feeding experiment using Wistar rats showed that iodine from the 5,7-diI-8-Q biofortified kale has a higher bioavailability than that from the AIN-93G diet. A number of promising results have been obtained, which could form the basis for further research.


Assuntos
Brassica , Iodo , Animais , Ratos , Antioxidantes/metabolismo , Temperatura Alta , Oxiquinolina/metabolismo , Iodo/metabolismo , Ratos Wistar , Brassica/química , Micronutrientes/metabolismo
4.
Sci Rep ; 13(1): 8440, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231053

RESUMO

Iodine (I) is considered a beneficial element or even micronutrient for plants. The aim of this study was to determine the molecular and physiological processes of uptake, transport, and metabolism of I applied to lettuce plants. KIO3, KIO3 + salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid were applied. RNA-sequencing was executed using 18 cDNA libraries constructed separately for leaves and roots from KIO3, SA and control plants. De novo transcriptome assembly generated 1937.76 million sequence reads resulting in 27,163 transcripts with N50 of 1638 bp. 329 differentially expressed genes (DEGs) in roots were detected after application of KIO3, out of which 252 genes were up-regulated, and 77 were down-regulated. In leaves, 9 genes revealed differential expression pattern. DEGs analysis indicated its involvement in such metabolic pathways and processes as: chloride transmembrane transport, phenylpropanoid metabolism, positive regulation of defense response and leaf abscission, and also ubiquinone and other terpenoid-quinone biosynthesis, protein processing in endoplasmic reticulum, circadian rhythm including flowering induction as well as a putative PDTHA (i.e. Plant Derived Thyroid Hormone Analogs) metabolic pathway. qRT-PCR of selected genes suggested their participation in the transport and metabolism of iodine compounds, biosynthesis of primary and secondary metabolites, PDTHA pathway and flowering induction.


Assuntos
Compostos de Iodo , Iodo , Transcriptoma , Lactuca/genética , Perfilação da Expressão Gênica , Compostos Orgânicos , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA