RESUMO
Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukemia (Ph+ BCPALL) is a high-risk acute lymphoblastic leukemia subtype characterized by the presence of BCR::ABL1 fusion gene. Tyrosine kinase inhibitors (TKIs) combined with chemotherapy are established as the first-line treatment. Additionally, rituximab (RTX), an anti-CD20 monoclonal antibody (mAb) is administered in adult BCP-ALL patients with ≥20% of CD20+ blasts. In this study, we observed a marked prevalence of CD20 expression in patients diagnosed with Ph+ BCP-ALL, indicating a potential widespread clinical application of RTX in combination with TKIs. Consequently, we examined the influence of TKIs on the antitumor effectiveness of anti-CD20 mAbs by evaluating CD20 surface levels and conducting in vitro functional assays. All tested TKIs were found to uniformly downregulate CD20 on leukemic cells, diminishing the efficacy of RTX-mediated complement-dependent cytotoxicity. Interestingly, these TKIs displayed varied effects on NK cell-mediated antibody-dependent cytotoxicity and macrophage phagocytic function. While asciminib demonstrated no inhibition of effector cell functions, dasatinib notably suppressed the anti-CD20-mAb-mediated NK cell cytotoxicity and macrophage phagocytosis of BCP-ALL cells. Dasatinib and ponatinib also decreased NK cell degranulation in vitro. Importantly, oral administration of dasatinib, but not asciminib, compromised NK cell activity within patients' blood, determined by ex vivo degranulation assay. Our results indicate that asciminib might be preferred over other TKIs for combination therapy with anti-CD20 mAbs.
RESUMO
OBJECTIVE: Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal non-malignant disease in which hematopoietic cell apoptosis may play an important pathophysiological role. Previous studies of the content of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) indicated the possibility of remote transmission of anti-apoptotic signals between pathological and normal hematopoietic progenitors. METHODS: The study determined the plasma levels of beta chemokines and cytokines in N = 19 patients with PNH and 31 healthy controls. The research material was peripheral blood plasma (EDTA) stored at -80 °C until the test. Beta chemokine and cytokine concentrations were tested in duplicate with Bio-Plex Pro Human Cytokine Assay (Bio-Rad, Hercules, CA, USA) using a Luminex 200 flow cytometer and xPONENT software (Luminex Corporation, Austin, TX, USA). In peripheral blood CD34+ cells we tested the proportions of PI(3,4,5)P3+ and Annexin binding apoptotic phenotype using FC and phosflow. RESULTS: Compared to the control group, the PNH group showed a significant increase in the plasma concentration of some beta chemokines and cytokines, including MIP-1alpha/CCL3, eotaxin/CCL11, MCP1/CCL2, IL4 and G-CSF. In the group of PNH patients, a significant decrease in the concentration of some cytokines was also observed: RANTES/CCL5, MIP-1beta/CCL4, PDGF-BB and IL9. At the same time, the plasma concentrations of the chemokine IP-10/CXCL10 and the cytokines IFN-gamma, TNF, IL6 and IL10 showed no significant deviations from the values for the control group. Anti-apoptotic phenotype and phosphatidylinositol (3,4,5)-trisphosphate content in PNH clone of CD34+ cells were associated with the level of CCL3 and negatively associated with CCL5, CCL4, PDGF-BB and IL9. CONCLUSIONS: This data suggest the existence of apoptotic and PI(3,4,5)P3 imbalance in PNH CD34+ cells driven by anti-apoptotic cytokine biosignature in PNH. Plasma cytokines and intracellular enzymes that regulate the phosphoinositide pathways may become a therapeutic target in PNH.
Assuntos
Hemoglobinúria Paroxística , Anti-Inflamatórios , Quimiocinas , Quimiocinas CC , Citocinas , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/patologia , HumanosRESUMO
Minimal residual disease (MRD) status is now considered as one of the most relevant prognostic factors in multiple myeloma (MM) while MRD negativity became an important endpoint in clinical trials. Here, we report the results of the first study evaluating the reproducibility of high-sensitivity flow cytometry MM MRD assessment in four laboratories in Poland. EuroFlow protocols for instrument setting standardization and sample preparation in MM MRD assessment were implemented in each laboratory. In the inter-laboratory reproducibility study, 12 bone marrow samples from MM patients were distributed and processed in participant laboratories. In the inter-operator concordance study, 13 raw data files from MM MRD measurements were analyzed by five independent operators. The inter-laboratory study showed high 95% overall concordance of results among laboratories. In the inter-operator study, 89% of MRD results reported were concordant, and the highest immunophenotype interpretation differences with regard to expression of CD27, CD45, CD81 were noticed. We confirmed the applicability and feasibility of the EuroFlow protocol as a highly sensitive method of MRD evaluation in MM. Results of our inter-center comparison study demonstrate that the standardization of MM MRD assessment protocols is highly desirable to improve quality and comparability of results within and between different clinical trials.
RESUMO
Spleen tyrosine kinase (SYK) is an important oncogene and signaling mediator activated by cell surface receptors crucial for acute myeloid leukemia (AML) maintenance and progression. Genetic or pharmacologic inhibition of SYK in AML cells leads to increased differentiation, reduced proliferation, and cellular apoptosis. Herein, we addressed the consequences of SYK inhibition to leukemia stem-cell (LSC) function and assessed SYK-associated pathways in AML cell biology. Using gain-of-function MEK kinase mutant and constitutively active STAT5A, we demonstrate that R406, the active metabolite of a small-molecule SYK inhibitor fostamatinib, induces differentiation and blocks clonogenic potential of AML cells through the MEK/ERK1/2 pathway and STAT5A transcription factor, respectively. Pharmacological inhibition of SYK with R406 reduced LSC compartment defined as CD34+CD38-CD123+ and CD34+CD38-CD25+ in vitro, and decreased viability of LSCs identified by a low abundance of reactive oxygen species. Primary leukemic blasts treated ex vivo with R406 exhibited lower engraftment potential when xenotransplanted to immunodeficient NSG/J mice. Mechanistically, these effects are mediated by disturbed mitochondrial biogenesis and suppression of oxidative metabolism (OXPHOS) in LSCs. These mechanisms appear to be partially dependent on inhibition of STAT5 and its target gene MYC, a well-defined inducer of mitochondrial biogenesis. In addition, inhibition of SYK increases the sensitivity of LSCs to cytarabine (AraC), a standard of AML induction therapy. Taken together, our findings indicate that SYK fosters OXPHOS and participates in metabolic reprogramming of AML LSCs in a mechanism that at least partially involves STAT5, and that SYK inhibition targets LSCs in AML. Since active SYK is expressed in a majority of AML patients and confers inferior prognosis, the combination of SYK inhibitors with standard chemotherapeutics such as AraC constitutes a new therapeutic modality that should be evaluated in future clinical trials.