Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Elife ; 102021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34491199

RESUMO

Extrahepatic tissues which oxidise ketone bodies also have the capacity to accumulate them under particular conditions. We hypothesised that acetyl-coenzyme A (acetyl-CoA) accumulation and altered redox status during low-flow ischaemia would support ketone body production in the heart. Combining a Langendorff heart model of low-flow ischaemia/reperfusion with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS), we show that ß-hydroxybutyrate (ß-OHB) accumulated in the ischaemic heart to 23.9 nmol/gww and was secreted into the coronary effluent. Sodium oxamate, a lactate dehydrogenase (LDH) inhibitor, increased ischaemic ß-OHB levels 5.3-fold and slowed contractile recovery. Inhibition of ß-hydroxy-ß-methylglutaryl (HMG)-CoA synthase (HMGCS2) with hymeglusin lowered ischaemic ß-OHB accumulation by 40%, despite increased flux through succinyl-CoA-3-oxaloacid CoA transferase (SCOT), resulting in greater contractile recovery. Hymeglusin also protected cardiac mitochondrial respiratory capacity during ischaemia/reperfusion. In conclusion, net ketone generation occurs in the heart under conditions of low-flow ischaemia. The process is driven by flux through both HMGCS2 and SCOT, and impacts on cardiac functional recovery from ischaemia/reperfusion.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Coração/fisiologia , Isquemia/metabolismo , Animais , Cromatografia Líquida , Ciclo do Ácido Cítrico , Hidroximetilglutaril-CoA Sintase , Corpos Cetônicos , Masculino , Mitocôndrias , Isquemia Miocárdica , Miócitos Cardíacos , Oxirredução , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
2.
Eur J Immunol ; 50(11): 1663-1675, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32447774

RESUMO

IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1ß are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL-1α after ligation of TLRs. Pro-IL-1α tethers to the plasma membrane in part through IL-1R2 or via association with a glycosylphosphatidylinositol-anchored protein, and can be cleaved, activated, and released by proteases. csIL-1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN-γ, independent of expression level. We also reveal how prior csIL-1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent-associated secretory phenotype via csIL-1α, but rather via soluble IL-1α. We believe these data are important for determining the local or systemic context in which IL-1α can contribute to disease and/or physiological processes.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Interferon gama/metabolismo , Interleucina-1alfa/metabolismo , Receptores Tipo II de Interleucina-1/metabolismo , Animais , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA