Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831671

RESUMO

Ionising γ radiation produces reactive oxygen species by water radiolysis, providing an interesting model approach for studying oxidative stress in plants. Three-week old plants of Arabidopsis thaliana were exposed to a low dose rate (25 mGy h-1) of γ radiation for up to 21 days. This treatment had no effect on plant growth and morphology, but it induced chronic oxidation of lipids which was associated with an accumulation of reactive carbonyl species (RCS). However, contrary to lipid peroxidation, lipid RCS accumulation was transient only, being maximal after 1 day of irradiation and decreasing back to the initial level during the subsequent days of continuous irradiation. This indicates the induction of a carbonyl-metabolising process during chronic ionising radiation. Accordingly, the γ-radiation treatment induced the expression of xenobiotic detoxification-related genes (AER, SDR1, SDR3, ALDH4, and ANAC102). The transcriptomic response of some of those genes (AER, SDR1, and ANAC102) was deregulated in the tga256 mutant affected in three TGAII transcription factors, leading to enhanced and/or prolonged accumulation of RCS and to a marked inhibition of plant growth during irradiation compared to the wild type. These results show that Arabidopsis is able to acclimate to chronic oxidative stress and that this phenomenon requires activation of a carbonyl detoxification mechanism controlled by TGAII. This acclimation did not occur when plants were exposed to an acute γ radiation stress (100 Gy) which led to persistent accumulation of RCS and marked inhibition of plant growth. This study shows the role of secondary products of lipid peroxidation in the detrimental effects of reactive oxygen species.

2.
Plant J ; 116(5): 1293-1308, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596909

RESUMO

With climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites. Seasonality was the main driver of all leaf traits, including cuticular triterpenoids, which were highly concentrated in summer, suggesting their importance to cope with drought and thermal stress periods. Under AD, trees not only reduced CO2 assimilation (-42%) in summer and leaf concentrations of some phenolic compounds and photosynthetic pigments (carotenoids from the xanthophyll cycle) but also enhanced the levels of other photosynthetic pigments (chlorophylls, lutein, and neoxanthin) and plastochromanol-8, an antioxidant located in chloroplasts. Overall, the metabolomic adjustments across seasons and drought conditions reinforce the idea that Q. pubescens is highly resistant to drought although significant losses of antioxidant defenses and photoprotection were identified under AD.


Assuntos
Quercus , Quercus/metabolismo , Antioxidantes/metabolismo , Estações do Ano , Florestas , Chuva , Folhas de Planta/metabolismo , Árvores/metabolismo , Secas , Água/metabolismo
3.
Antioxidants (Basel) ; 11(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35883824

RESUMO

Plants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters. In vitro oxidation of lipids induced luminescence throughout the visible spectrum (450−850 nm). However, luminescence in the red spectral domain (>640 nm) occurred first, then declined in parallel with the appearance of the emission in the blue-green (<600 nm). This temporal separation suggests that the chemical species emitting in the blue-green are secondary products, possibly deriving from the red light-emitting species. This conversion did not seem to occur in planta because spontaneous chemiluminescence from plant tissues (leaves, roots) occurred only in the red/far-red light domain (>640 nm), peaking at 700−750 nm. The spectrum of plant chemiluminescence was independent of chlorophyll. The in vivo signal was modulated by cellular detoxification mechanisms and by changes in the concentration of singlet oxygen in the tissues, although the singlet oxygen luminescence bands did not appear as major bands in the spectra. Our results indicate that the intensity of endogenous chemiluminescence from plant tissues is determined by the balance between the formation of luminescent species through secondary reactions involving lipid peroxide-derived intermediates, including singlet oxygen, and their elimination by metabolizing processes. The kinetic aspects of plant chemiluminescence must be taken into account when using the signal as an oxidative stress marker.

4.
Methods Mol Biol ; 2526: 181-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35657520

RESUMO

Because they are highly unsaturated, plant lipids are sensitive to oxidation and constitute a primary target of reactive oxygen species. Therefore, quantification of lipid peroxidation provides a pertinent approach to evaluating oxidative stress in plants. Here, we describe a simple method to measure upstream products of the peroxidation of the major polyunsaturated fatty acids in plants, namely, linolenic acid (C18:3) and linoleic acid (C18:2). The method uses conventional HPLC with UV detection to measure hydroxy C18:3 and C18:2 after reduction of their respective hydroperoxides. The described experimental approach requires low amounts of plant material (a few hundred milligrams), monitors oxidation of both membrane and free fatty acids, and can discriminate between enzymatic and non-enzymatic lipid peroxidation.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Cromatografia Líquida de Alta Pressão , Peroxidação de Lipídeos , Oxirredução , Espécies Reativas de Oxigênio
5.
Elife ; 112022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35156611

RESUMO

Guanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants. Here, we demonstrate that ppGpp biosynthesis is necessary for acclimation to nitrogen starvation in Arabidopsis. We show that ppGpp is required for remodeling the photosynthetic electron transport chain to downregulate photosynthetic activity and for protection against oxidative stress. Furthermore, we demonstrate that ppGpp is required for coupling chloroplastic and nuclear gene expression during nitrogen starvation. Altogether, our work indicates that ppGpp is a pivotal regulator of chloroplast activity for stress acclimation in plants.


Assuntos
Arabidopsis/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Aclimatação , Arabidopsis/genética , Cloroplastos/fisiologia , Cianobactérias/citologia , Regulação da Expressão Gênica de Plantas , Células Vegetais , Estresse Fisiológico
6.
Photosynth Res ; 152(1): 43-54, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35000138

RESUMO

Arabidopsis plants were grown from seeds at different photon flux densities (PFDs) of white light ranging from 65 to 800 µmol photons m-2 s-1. Increasing PFD brought about a marked accumulation of plastoquinone (PQ) in leaves. However, the thylakoid photoactive PQ pool, estimated to about 700 pmol mg-1 leaf dry weight, was independent of PFD; PQ accumulation in high light mostly occurred in the photochemically non-active pool (plastoglobules, chloroplast envelopes) which represented up to 75% of total PQ. The amounts of PSII reaction center (on a leaf dry weight basis) also were little affected by PFD during growth, leading to a constant PQ/PSII ratio at all PFDs. Boosting PQ biosynthesis by overexpression of a solanesyl diphosphate-synthesizing enzyme strongly enhanced the PQ levels, particularly at high PFDs. Again, this accumulation occurred exclusively in the non-photoactive PQ pool. Mutational suppression of the plastoglobular ABC1K1 kinase led to a selective reduction of the thylakoid PQ pool size to ca. 400 pmol mg-1 in a large range of PFDs, which was associated with a restriction of the photosynthetic electron flow. Our results show that photosynthetic acclimation to light intensity does not involve modulation of the thylakoid PQ pool size or the amounts of PSII reaction centers. There appears to be a fixed amount of PQ molecules for optimal interaction with PSII and efficient photosynthesis, with the extra PQ molecules being stored outside the thylakoid membranes, implying a tight regulation of PQ distribution within the chloroplasts.


Assuntos
Arabidopsis , Plastoquinona , Aclimatação , Arabidopsis/metabolismo , Transporte de Elétrons , Homeostase , Luz , Oxirredução , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Plastoquinona/metabolismo , Tilacoides/metabolismo
7.
Physiol Plant ; 171(2): 246-259, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33215689

RESUMO

Lipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques. Oxidative damage to attached leaves was measured by autoluminescence imaging, using a highly sensitive CCD camera, and the activity of the detoxification pathway, dependent on the transcription regulator SCARECROW-LIKE 14 (SCL14), was monitored with a bioluminescent line expressing the firefly LUCIFERASE (LUC) gene under the control of the ALKENAL REDUCTASE (AER) gene promoter. We identified 4-hydroxynonenal (HNE), and to a lesser extent 4-hydroxyhexenal (HHE), as highly reactive compounds that are harmful to leaves and can trigger AER gene expression, contrary to other RCS (pentenal, hexenal) and to isoprostanoids. Although the levels of HNE and other RCS were enhanced in the SCL14-deficient mutant (scl14), exogenously applied HNE was similarly damaging to this mutant, its wild-type parent and a SCL14-overexpressing transgenic line (OE:SCL14). However, strongly boosting the SCL14 detoxification pathway and AER expression by a pre-treatment of OE:SCL14 with the signaling apocarotenoid ß-cyclocitral canceled the damaging effects of HNE. Conversely, in the scl14 mutant, the effects of ß-cyclocitral and HNE were additive, leading to enhanced leaf damage. These results indicate that the cellular detoxification pathway induced by the low-toxicity ß-cyclocitral targets highly toxic compounds produced during lipid peroxidation, reminiscent of a safener-type mode of action.


Assuntos
Peroxidação de Lipídeos , Luminescência , Aldeídos , Diterpenos , Estresse Oxidativo , Folhas de Planta , Espécies Reativas de Oxigênio
8.
Free Radic Biol Med ; 160: 894-907, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32931882

RESUMO

Tocochromanols (tocopherols, tocotrienols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (carotenes and xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analyzed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9/plastoquinol-9 and zeaxanthin. In the first line of defense (non-radical mechanism), singlet oxygen is either physically or chemically quenched by α-tocopherol; however, when α-tocopherol is consumed, zeaxanthin and plastoquinone-9/plastoquinol-9 can provide alternative protection against singlet oxygen toxicity by functional replacement of α-tocopherol either by zeaxanthin for the physical quenching or by plastoquinone-9/plastoquinol-9 for the chemical quenching. When singlet oxygen escapes this first line of defense, it oxidizes lipids and forms lipid hydroperoxides, which are oxidized to lipid peroxyl radicals by ferric iron. In the second line of defense (radical mechanism), lipid peroxyl radicals are scavenged by α-tocopherol. After its consumption, plastochromanol-8 overtakes this function. We provide a comprehensive description of the reaction pathways underlying the non-radical and radical antioxidant activities of α-tocopherol, carotenoids, plastoquinone-9/plastoquinol-9 and plastochromanol-8. The interplay between the different plastid lipid-soluble antioxidants in the non-radical and the radical mechanism provides step by step insights into protection against photooxidative stress in higher plants.


Assuntos
Arabidopsis , Antioxidantes , Arabidopsis/genética , Cloroplastos , Luz , Tocoferóis
9.
Front Plant Sci ; 11: 337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269582

RESUMO

Photosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness. Recently PROTON GRADIENT REGULATION 6 (PGR6-ABC1K1), an atypical plastoglobule-associated kinase, was shown to regulate a new mechanism of light response by controlling the homeostasis of photoactive plastoquinone (PQ). PQ is a crucial electron carrier existing as a free neutral lipid in the photosynthetic thylakoid membrane. Perturbed homeostasis of PQ impairs photosynthesis and plant acclimation to high light. Here we show that a homologous kinase, ABC1K3, which like PGR6-ABC1K1 is associated with plastoglobules, also contributes to the homeostasis of the photoactive PQ pool. Contrary to PGR6-ABC1K1, ABC1K3 disfavors PQ availability for photosynthetic electron transport. In fact, in the abc1k1/abc1k3 double mutant the pgr6(abc1k1) the photosynthetic defect seen in the abc1k1 mutant is mitigated. However, the PQ concentration in the photoactive pool of the double mutant is comparable to that of abc1k1 mutant. An increase of the PQ mobility, inferred from the kinetics of its oxidation in dark, contributes to the mitigation of the pgr6(abc1k1) photosynthetic defect. Our results also demonstrate that ABC1K3 contributes to the regulation of other mechanisms involved in the adaptation of the photosynthetic apparatus to changes in light quality and intensity such as the induction of thermal dissipation and state transitions. Overall, we suggests that, besides the absolute concentration of PQ, its mobility and exchange between storage and active pools are critical for light acclimation in plants.

10.
Plant J ; 102(6): 1266-1280, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31975462

RESUMO

Singlet oxygen (1 O2 ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a 1 O2 -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the 1 O2 signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low 1 O2 levels. Exposure of ch1 to high light stress ultimately leading to cell death resulted in a marked upregulation of the two UPR branches (bZIP60/IRE1 and bZIP28/bZIP17). Accordingly, mutational suppression of bZIP60 and bZIP28 increased plant phototolerance, and a strong UPR activation by high tunicamycin concentrations promoted high light-induced cell death. Conversely, light acclimation of ch1 to 1 O2 stress put a limitation in the high light-induced expression of UPR genes, except for the gene encoding the BIP3 chaperone, which was selectively upregulated. BIP3 deletion enhanced Arabidopsis photosensitivity while plants treated with a chemical chaperone exhibited enhanced phototolerance. In conclusion, 1 O2 induces the ER-mediated UPR response that fulfils a dual role in high light stress: a moderate UPR, with selective induction of BIP3, is part of the acclimatory response to 1 O2 , and a strong activation of the whole UPR is associated with cell death.


Assuntos
Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Transdução de Sinais , Oxigênio Singlete/metabolismo , Resposta a Proteínas não Dobradas , Morte Celular , Regulação da Expressão Gênica de Plantas , Luz/efeitos adversos , Estresse Fisiológico , Transcriptoma
11.
Commun Biol ; 2: 220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240258

RESUMO

Photosynthesis produces organic carbon via a light-driven electron flow from H2O to CO2 that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or stored (non-photoactive pool) in thylakoid-attached lipid droplets, the plastoglobules. The photoactive pool acts also as a signal of photosynthetic activity allowing the adaptation to changes in light condition. Here we show that, in Arabidopsis thaliana, proton gradient regulation 6 (PGR6), a predicted atypical kinase located at plastoglobules, is required for plastoquinone homoeostasis, i.e. to maintain the photoactive plastoquinone pool. In a pgr6 mutant, the photoactive pool is depleted and becomes limiting under high light, affecting short-term acclimation and photosynthetic efficiency. In the long term, pgr6 seedlings fail to adapt to high light and develop a conditional variegated leaf phenotype. Therefore, PGR6 activity, by regulating plastoquinone homoeostasis, is required to cope with high light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase/fisiologia , Fotossíntese/fisiologia , Plastoquinona/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Adaptação Biológica/fisiologia , Proteínas de Arabidopsis/genética , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
12.
Plant Physiol ; 180(3): 1691-1708, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123095

RESUMO

Singlet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate OXI1 expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing OXI1 in Arabidopsis (Arabidopsis thaliana) increased plant sensitivity to high light and induced early senescence of mature leaves. Both phenomena rely on a marked accumulation of jasmonate and salicylate. DAD1 or DAD2 overexpression decreased OXI1 expression, jasmonate levels, and sensitivity to photooxidative stress. Knock-out mutants of DAD1 or DAD2 exhibited the opposite responses. Exogenous applications of jasmonate upregulated salicylate biosynthesis genes and caused leaf damage in wild-type plants but not in the salicylate biosynthesis mutant Salicylic acid induction-deficient2, indicating that salicylate plays a crucial role in PCD downstream of jasmonate. Treating plants with salicylate upregulated the DAD genes and downregulated OXI1 We conclude that OXI1 and DAD are antagonistic regulators of cell death through modulating jasmonate and salicylate levels. High light-induced PCD thus results from a tight control of the relative activities of these regulating proteins, with DAD exerting a negative feedback control on OXI1 expression.


Assuntos
Apoptose/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fosfolipases A1/genética , Proteínas Serina-Treonina Quinases/genética , Ácido Salicílico/metabolismo , Apoptose/efeitos da radiação , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Mutação , Oxilipinas/farmacologia , Fosfolipases A1/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Salicílico/farmacologia , Oxigênio Singlete/metabolismo
13.
Commun Biol ; 2: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069268

RESUMO

In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.


Assuntos
Proteínas de Algas/genética , Chlamydomonas reinhardtii/enzimologia , Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas , Plastoquinona/metabolismo , Protoporfirinogênio Oxidase/genética , Proteínas de Algas/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/genética , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Diurona/farmacologia , Transporte de Elétrons , Retroalimentação Fisiológica , Herbicidas/farmacologia , Oxirredução , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/efeitos dos fármacos , Plastídeos/enzimologia , Plastídeos/genética , Protoporfirinogênio Oxidase/metabolismo , Protoporfirinas/metabolismo
14.
Plant Cell ; 30(10): 2495-2511, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30262551

RESUMO

When exposed to unfavorable environmental conditions, plants can absorb light energy in excess of their photosynthetic capacities, with the surplus energy leading to the production of reactive oxygen species and photooxidative stress. Subsequent lipid peroxidation generates toxic reactive carbonyl species whose accumulation culminates in cell death. ß-Cyclocitral, an oxidized by-product of ß-carotene generated in the chloroplasts, mediates a protective retrograde response that lowers the levels of toxic peroxides and carbonyls, limiting damage to intracellular components. In this study, we elucidate the molecular mechanism induced by ß-cyclocitral in Arabidopsis thaliana and show that the xenobiotic detoxification response is involved in the tolerance to excess light energy. The involvement of the xenobiotic response suggests a possible origin for this pathway. Furthermore, we establish the hierarchical structure of this pathway that is mediated by the ß-cyclocitral-inducible GRAS protein SCARECROW LIKE14 (SCL14) and involves ANAC102 as a pivotal component upstream of other ANAC transcription factors and of many enzymes of the xenobiotic detoxification response. Finally, the SCL14-dependent protective mechanism is also involved in the low sensitivity of young leaf tissues to high-light stress.


Assuntos
Aldeídos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diterpenos/metabolismo , Estresse Fisiológico/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Inativação Metabólica , Luz , Mutação , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenobióticos/farmacologia
15.
Plant J ; 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901834

RESUMO

Prenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen (1 O2 ) formed during high light stress in higher plants. Although quenching of 1 O2 by prenylquinols has been previously studied, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol-9 (PQH2 -9) in chemical quenching of 1 O2 was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH2 -9 and plastochromanol-8 biosynthesis. In this work, direct evidence for chemical quenching of 1 O2 by plastoquinols and their oxidation products is presented, which is obtained by microscopic techniques in vivo. Chemical quenching of 1 O2 was associated with consumption of PQH2 -9 and formation of its various oxidized forms. Oxidation of PQH2 -9 by 1 O2 leads to plastoquinone-9 (PQ-9), which is subsequently oxidized to hydroxyplastoquinone-9 [PQ(OH)-9]. We provide here evidence that oxidation of PQ(OH)-9 by 1 O2 results in the formation of trihydroxyplastoquinone-9 [PQ(OH)3 -9]. It is concluded here that PQH2 -9 serves as an efficient 1 O2 chemical quencher in Arabidopsis, and PQ(OH)3 -9 can be considered as a natural product of 1 O2 reaction with PQ(OH)-9. The understanding of the mechanisms underlying 1 O2 chemical quenching provides information on the role of plastoquinols and their oxidation products in the response of plants to photooxidative stress.

16.
Plant Cell Environ ; 41(10): 2299-2312, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29749622

RESUMO

The capacity of a Quercus pubescens forest to resist recurrent drought was assessed on an in situ experimental platform through the measurement of a large set of traits (ecophysiological and metabolic) studied under natural drought (ND) and amplified drought (AD) induced by partial rain exclusion. This study was performed during the third and fourth years of AD, which correspond to conditions of moderate AD in 2014 and harsher AD in 2015, respectively. Although water potential (Ψ) and net photosynthesis (Pn) were noticeably reduced under AD in 2015 compared to ND, trees showed similar growth and no oxidative stress. The absence of oxidative damage could be due to a strong accumulation of α-tocopherol, suggesting that this compound is a major component of the Q. pubescens antioxidant system. Other antioxidants were rather stable under AD in 2014, but slight changes started to be observed in 2015 (carotenoids and isoprene) due to harsher conditions. Our results indicate that Q. pubescens could be able to cope with AD, for at least 4 years, likely due to its antioxidant system. However, growth decrease was observed during the fifth year (2016) of AD, suggesting that this resistance could be threatened over longer periods of recurrent drought.


Assuntos
Quercus/metabolismo , Mudança Climática , Desidratação , Secas , Região do Mediterrâneo , Estresse Oxidativo , Fotossíntese , Quercus/fisiologia , Fatores de Tempo
17.
Plant Cell Environ ; 41(10): 2277-2287, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29601642

RESUMO

The Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC-8). When exposed to excess light energy, vte1 produced more singlet oxygen (1 O2 ) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ-9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ-9 can replace tocopherol and PC-8 in photoprotection. High total PQ-9 levels were associated with a noticeable decrease in 1 O2 production and higher levels of Hydroxyplastoquinone (PQ-C), a 1 O2 -specific PQ-9 oxidation product. The extra PQ-9 molecules in the vte1 SPS1oex plants were stored in the plastoglobules and the chloroplast envelopes, rather than in the thylakoid membranes, whereas PQ-C was found almost exclusively in the thylakoid membranes. Upon exposure of wild-type plants to high light, the thylakoid PQ-9 pool decreased, whereas the extrathylakoid pool remained unchanged. In vte1 and vte1 SPS1oex plants, the PQ-9 losses in high light were strongly amplified, affecting also the extrathylakoid pool, and PQ-C was found in high amounts in the thylakoids. We conclude that the thylakoid PQ-9 pool acts as a 1 O2 scavenger and is replenished from the extrathylakoid stock.


Assuntos
Sequestradores de Radicais Livres/metabolismo , Plastoquinona/metabolismo , Oxigênio Singlete/metabolismo , Tilacoides/metabolismo , Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância de Spin Eletrônica , Luz , Peroxidação de Lipídeos , Estresse Oxidativo/efeitos da radiação
18.
Plant Cell Environ ; 40(2): 216-226, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27813110

RESUMO

Singlet oxygen (1 O2 ) signalling in plants is essential to trigger both acclimatory mechanisms and programmed cell death under high light stress. However, because of its chemical features, 1 O2 requires mediators, and the players involved in this pathway are largely unknown. The ß-carotene oxidation product, ß-cyclocitral, is one such mediator. Produced in the chloroplast, ß-cyclocitral induces changes in nuclear gene expression leading to photoacclimation. Recently, the METHYLENE BLUE SENSITIVITY protein MBS has been identified as a key player in 1 O2 signalling leading to tolerance to high light. Here, we provide evidence that MBS1 is essential for acclimation to 1 O2 and cross-talks with ß-cyclocitral to mediate transfer of the 1 O2 signal to the nucleus, leading to photoacclimation. The presented results position MBS1 downstream of ß-cyclocitral in 1 O2 signalling and suggest an additional role for MBS1 in the regulation of plant growth and development under chronic 1 O2 production.


Assuntos
Aclimatação , Aldeídos/farmacologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Diterpenos/farmacologia , Oxigênio Singlete/farmacologia , Aclimatação/efeitos da radiação , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Mutação/genética , Fenótipo , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estresse Fisiológico/efeitos da radiação
19.
Sci Rep ; 5: 10919, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-26039552

RESUMO

Plastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-9 occurred, followed by a progressive increase in concentration during the acclimation phase. By overexpressing the plastoquinone-9 biosynthesis gene SPS1 (solanesyl diphosphate synthase 1) in Arabidopsis, we succeeded in generating plants that specifically accumulate plastoquinone-9 and its derivative plastochromanol-8. The SPS1-overexpressing lines were much more resistant to photooxidative stress than the wild type, showing marked decreases in leaf bleaching, lipid peroxidation and PSII photoinhibition under excess light. Comparison of the SPS1 overexpressors with other prenyl quinone mutants indicated that the enhanced phototolerance of the former plants is directly related to their increased capacities for plastoquinone-9 biosynthesis.


Assuntos
Adaptação Biológica , Luz , Estresse Oxidativo , Fotossíntese , Fenômenos Fisiológicos Vegetais , Plastoquinona/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Vias Biossintéticas , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA