Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38002211

RESUMO

The aim of the study was to compare the properties of inulin hydrogels obtained with different methods, e.g., the traditional-thermal method and new, non-thermal methods, used in food production, like ultrasonic, high-pressure homogenization (HPH), and high hydrostatic pressures (HHPs). It was found that each of the compared induction methods allowed for obtaining inulin hydrogels. However, the use of non-thermal induction methods allows for obtaining a gel structure faster than in the case of thermal induction. In addition, hydrogels obtained with new, non-thermal methods differ from gels obtained with thermal treatment. They were characterized by higher stability (from 1.7 percent point-of-stability parameters for HHP 150 MPa to 18.8 for HPH II cycles) and in most cases, by improved microrheological properties-lower solid-liquid balance toward the solid phase, increased elasticity and viscosity indexes, and lowering the flow index. The gels obtained with the new, non-thermal method were also characterized by a more delicate structure, including lower firmness (the differences between thermal and non-thermal inductions were from 0.73 N for HHP at 500 MPa to 2.39 N for HHP at 150 MPa) and spreadability (the differences between thermal and non-thermal inductions were from 7.60 Ns for HHP at 500 MPa to 15.08 Ns for HHP at 150 MPa). The color of ultrasound-induced inulin gels, regarding the HPH and HHP technique, was darker (the differences in the L* parameter between thermal and non-thermal inductions were from 1.92 for HHP at 500 MPa to 4.37 for 10 min ultrasounds) and with a lower a* color parameter (the differences in the a* parameter between thermal and non-thermal inductions were from 0.16 for HHP at 500 MPa to 0.39 for HPH II cycles) and b* color parameter (the differences in the b* parameter between thermal and non-thermal inductions were from 1.69 for 5 min ultrasounds to 2.68 for HPH II cycles). It was also found that among the compared induction methods, the high-pressure technique has the greatest potential for modifying the properties of the created inulin hydrogels. Thanks to its application, depending on the amount of applied pressure, it was possible to obtain gels with very different characteristics, both delicate (i.e., soft and spreadable), using HHP at 150 MPa, and hard, using HHP at 500 MPa, the closest in characteristics to gels induced with the thermal method. This may allow the properties of hydrogels to be matched to the characteristics of the food matrix being created.

2.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372603

RESUMO

The aim of the study was to analyze the influence of mullein flower extract addition on the oxidative stability and antioxidant activity of cold-pressed oils with a high content of unsaturated fatty acids. The conducted research has shown that the addition of mullein flower extract increases the oxidative stability of oils, but its addition depends on the type of oil and should be selected experimentally. In rapeseed and linseed oil, the best stability was found for samples with 60 mg of extract/kg of oil, while in chia seed oil and hemp oil, it was found with 20 and 15 mg of extract/kg of oil, respectively. The hemp oil exhibited the highest antioxidant properties, as evidenced by an increase in the induction time at 90 °C from 12.11 h to 14.05 h. Additionally, the extract demonstrated a protective factor of 1.16. Oils (rapeseed, chia seed, linseed, and hempseed) without and with the addition of mullein extract (2-200 mg of extract/kg of oil) were analyzed for oxidative stability, phenolic compounds content, and antioxidant activity using DPPH• and ABTS•+ radicals. After the addition of the extract, the oils had from 363.25 to 401.24 mg GAE/100 g for rapeseed oil and chia seed oil, respectively. The antioxidant activity of the oils after the addition of the extract ranged from 102.8 to 221.7 and from 324.9 to 888.8 µM Trolox/kg for the DPPH and ABTS methods, respectively. The kinetics parameters were calculated based on the oils' oxidative stability results. The extract increased the activation energy (Ea) and decreased the constant oxidation rate (k).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA